Skip to main content
Log in

Is the Rigid-Band Model Applicable in Lithium Intercalation Compounds?

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Numerous layered compounds are interesting materials in which lithium intercalation occurs primarily without destruction of the host lattice. In many cases a rigid-band model is a useful first approximation for describing the changes in electronic properties of the host material with intercalation. This paper presents some recent experimental results obtained on transition-metal chalcogenide compounds and on transition-metal oxides as well. We shall observe, nevertheless, that the rigid-band model is not applicable to all of the intercalated materials. The applicability of the rigid-band model may be used as a test for the most desirable properties of a good intercalation material. This needs to be more extensively documented for their possible applications as insertion electrodes in solid state batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.J. Sellmyer, in Solid State Physics, vol. 33, edited by H. Ehrenreich, F. Scitz and D. Turnbull (Academic Press, New-York, 1978), p. 83.

    Article  Google Scholar 

  2. H. Jones, Proc. R. Soc. London Ser. A 144, 225 (1934).

    Article  CAS  Google Scholar 

  3. J. Friedel, Adv. Phys. 3, 446 (1954).

    Article  Google Scholar 

  4. W.Y. Liang, Mater. Sci. Eng. B 3, 139 (1989).

    Article  Google Scholar 

  5. E. Doni and R. Girlanda, in Electronic Structure and Electronic Transitions in Layered Materials, edited by V. Grasso (Riedel, Dortrecht, 1986), p. 1.

  6. P.C. Klipstein, C.M. Pereira and R.H. Friend, in Physics and Chemistry of Electrons and Ions in Condensed Matter. NATO-ASI Series, Ser. C 130, edited by J.V. Acrivos, N.F. Mott and A.D. Yoffe (Reidel, Dortrecht, 1984), p. 437.

  7. P.C. Klipstein and R.H. Friend, J. Phys. C 20, 4169 (1987).

    Article  CAS  Google Scholar 

  8. C. Julien, I. Samaras, O. Gorochov and A.M. Ghorayeb, Phys. Rev. B 45, 13390 (1992).

    Article  CAS  Google Scholar 

  9. A.M. Ghorayeb and R.H. Friend, J. Phys. C 20, 4181 (1987).

    Article  CAS  Google Scholar 

  10. A.R. Beal and S. Nulsen, Phil. Mag. B 43, 965 (1981).

    Article  CAS  Google Scholar 

  11. H. Isomaki, J. von Boehm and P. Krusius, J. Phys. C 20, 3239 (1979).

    Article  Google Scholar 

  12. C. Julien, J. Ruvalds, A. Virosztek and O. Gorochov, Solid State Commun. 79, 875 (1991).

    Article  CAS  Google Scholar 

  13. A. Virosztek and J. Ruvalds, Phys. Rev. B 42, 4064 (1990).

    Article  CAS  Google Scholar 

  14. G.A. Scholz and R.F. Frindt, Can. J. Phys. 61, 965 (1983).

    Article  CAS  Google Scholar 

  15. A.M. Ghorayeb, W.Y. Liang and A.D. Yoffe, in Intercalation in Layered Compounds NATO-ASI Series, Ser. B 148, edited by M.S. Dresselhaus (Plenum, New-York, 1986), p. 135.

  16. W.Y. Liang, in Intercalation in Layered Compounds. NATO-ASI Series, Ser. B 148, edited by M.S. Dresselhaus (Plenum, New-York, 1986), p. 31.

  17. M.A. Py and R.R. Haering, Can. J. Phys. 61, 76 (1983).

    Article  CAS  Google Scholar 

  18. C. Julien, E. Hatzikraniotis, K.M. Paraskevopoulos, A. Chevy and M. Balkanski, Solid State Ionics 18-19, 859 (1986).

    Google Scholar 

  19. C. Julien, M. Jouanne, P.A. Burret and M. Balkanski, Mater. Sci. Eng. B 3, 39 (1989).

    Article  Google Scholar 

  20. P.A. Burret, M. Jouanne and C. Julien, Z. Phys. B - Condensed Matter 76, 451 (1989).

    Article  CAS  Google Scholar 

  21. E. Doni, R. Girlanda, V. Grasso, A. Bolzorotti and M. Piacentini, Nuovo Cimento B 51, 154 (1979).

    Article  Google Scholar 

  22. P. Gomes da Costa, M. Balkanski and R.F. Wallis, Phys. Rev. B 43, 7066 (1991).

    Article  CAS  Google Scholar 

  23. C. Levy-Clement, J. Rioux, J.R. Dahn and W.R. McKinnon, Mat. Res. Bull. 19, 1629 (1984).

    Article  CAS  Google Scholar 

  24. J.F. Baumard and F. Gervais, Phys. Rev. B 15, 2316 (1977).

    Article  CAS  Google Scholar 

  25. I. Lelidis, D. Siapkas, C. Julien and M. Balkanski, Mater. Sci. Eng. B 3, 133 (1989).

    Article  Google Scholar 

  26. J.B. Goodenough, in Solid State Microbatteries. NATO-ASI Series, Ser. B 217, edited by J.R. Akridge and M. Balkanski (Plenum, New-York, 1990), p. 213.

  27. S. Crouch-Baker and P.G. Dickens, Solid State Ionics 32/33, 219 (1989).

    Article  Google Scholar 

  28. D.W. Murphy, P.A. Christian, F.J. Di Salvo and J.N. Candes, J. Electrochem. Soc. 126, 497 (1979).

    Article  CAS  Google Scholar 

  29. K. West, B. Zachau-Christiansen and T. Jacobsen, Electrochim. Acta 28, 1829 (1983).

    Article  CAS  Google Scholar 

  30. C. Julien and G.A. Nazri, Solid State Ionics (to be published).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Julien, C., Balkanski, M. Is the Rigid-Band Model Applicable in Lithium Intercalation Compounds?. MRS Online Proceedings Library 293, 27–37 (1992). https://doi.org/10.1557/PROC-293-27

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-293-27

Navigation