Skip to main content
Log in

Physical properties of nanocrystalline MoS2 and WS2 particles produced by CO2 laser pyrolysis

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Nanocrystalline powders of 2H-MoS2 and 2H-WS2 with average particle size 5 and 9 nm, respectively, have been produced using CO2 laser pyrolysis. Typical production rate for these nanoparticles is 2g/hr. Particle size, crystallite size, and the structural phase were determined using X-ray diffraction(XRD), transmission electron microscopy(TEM), and Raman scattering. Particle size effects may have been observed in the Raman-active modes (WS2 and MoS2) and in the band-edge excitons (MoS2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. S. Haggerty, “Sinterable Powders from Laser-Driven Reactions”, in Laser-induced Chemical Processes, J.I. Steinfeld, Editor, 1981, Plenum Press: New York.

    Google Scholar 

  2. P. R. Buerki, T. Troxler, and S. Leutwyler, “Synthesis of Ultrafine Si3N4 Particles by CO2-laser Induced Gas Phase Reactions”, in High Temperature Science, Vol. 27. 1990, Humana Press Inc. 323.

    Google Scholar 

  3. F. Curcio, G. Ghiglione, M. Musci, and C. Nannetti, Appl. Surf. Sci., 36: p.52, 1989.

    Article  Google Scholar 

  4. G. W. Rice and R. L. Woodin, J. Am. Ceram. Soc., 71: p. C181, 1988.

    Article  CAS  Google Scholar 

  5. F. Curcio, M. Musci, and N. Notaro, Applied Surface Science, 46: p. 225, 1990.

    Article  CAS  Google Scholar 

  6. R. A. Fiato, G. W. Rice, S. Miseo, and S. L. Soled, US Patent, 4,637,753, 1987.

  7. G. W. Rice, R. A. Fiato, and S. L. Soled, US Patent, 4,659,681, 1987.

  8. X.-Xin Bi, B. Ganguly, G. P. Huffman, F. E. Huggins, M. Endo and P. C. Eklund, Journal of Materials Research, Vol. 8 (7), 1666 (1993).

    Article  CAS  Google Scholar 

  9. J. M. Stencel, P. C. Eklund, X.-X. Bi, and F. J. Derbyshire, Catalysis Today, 15: p. 285, 1992.

    Article  CAS  Google Scholar 

  10. M. R. Hilton and P. D. Fleischauer, J. Mater. Res., 5 (2): p. 406, 1990.

    Article  CAS  Google Scholar 

  11. O. Weiser and S. Sanda, Sulfide Catalysts, Their Properties and Applications, 1973, New York: Pergamon.

    Google Scholar 

  12. A. J. Jacobson, R. R. Chianelli, S. M. Rich, and M. S. Whittingham, Mater. Res. Bull., 14: p.1437, 1979.

    Article  CAS  Google Scholar 

  13. A. J. Jacobson, R. R. Chianelli, and M. S. Whittingham, J. Electrochem. Soc., 126: p.2277, 1979.

    Article  CAS  Google Scholar 

  14. J. Stoemenos, “Li Intercalated MoS2, Investigation by transmission electron microscopy”, in Microionics-Solid State Integrable Batteries, M. Balkanski, Editor, 1991, Elsevier Science Publishers B. V.: Brussels and Luxembourg, p. 363.

    Google Scholar 

  15. C. B. Roxlo, R. R. Chianelli, H. W. Deckman, A. F. Ruppert, and P. P. Wong, J. Vac.Sci. Technol., A5 (4): p. 555, 1987.

    Article  Google Scholar 

  16. A. R. Beal, J. C. Knights, and W. Y. Liang, J. Phys. CSolid State Phys., 5: p. 3540, 1972.

    Article  CAS  Google Scholar 

  17. M. R. Khan and G. J. Goldsmith, IL NUOVO CIMENTO, 2D (3): p. 665, 1983.

    Article  CAS  Google Scholar 

  18. A. M. Hermann, R. B. Somoano, V. Hadek, and A. Rembaum, Solid State Comm., 13: p.1065, 1973.

    Article  CAS  Google Scholar 

  19. J. A. Woollam and R. B. Somoano, Phys. Rev. B, 13: p. 3843, 1976.

    Article  CAS  Google Scholar 

  20. R. B. Somoano and A. Rembaum, Phys. Rev. Lett., 27: p. 402, 1971.

    Article  CAS  Google Scholar 

  21. R. B. Somoano, V. Hadek, and A. Rembaum, J. Chem. Phys., 58: p. 697, 1973.

    Article  CAS  Google Scholar 

  22. R. W. Siegel, Processing of Metals and Alloys, Materials Science and Technology - A comprehensive Treatment (VCH Verlagsgesellschaft, Weinheim)1991.

    Google Scholar 

  23. P. D. Persans, E. Lu, J. Haus, G. Wagoner, and A. F. Ruppert, Mat. Res. Soc. Symp. Proc., 195: p. 591, 1990.

    Article  CAS  Google Scholar 

  24. E. Lu, P. D. Persans, A. F. Ruppert, and R. R. Chianelli, Mat. Res. Soc. Symp. Proc., 164: p. 153, 1990.

    Article  CAS  Google Scholar 

  25. X.-X. Bi, K. Wang, W. T. Lee, S. Bandow, and P. C. Eklund, to be published.

  26. P. C. Eklund, Xiang-Xin Bi, and F.J. Derbyshire, Preprints of Fuel Division, American Chemical Society, Vol. 37(4), 1781(1992).

    CAS  Google Scholar 

  27. R. R. Patty, G. M. Russwurm, W. A. McClenny, and D. R. Morgan, Applied Optics, 13 (12): p. 2850, 1974.

    Article  CAS  Google Scholar 

  28. B. D. Cullity, Elements of X-Ray Diffraction. 1967, Addison-Wesley Publishing Company, Inc.

    Google Scholar 

  29. X-ray Powder Diffraction Data File, JCPDS, 1991.

  30. J. M. Chen and C. S. Wang, Solid State Comm., 14: p. 857–860, 1974.

    Article  CAS  Google Scholar 

  31. T. J. Wieting and J. L. Verble, Phys. Rev. B, 3: p. 4286, 1971.

    Article  Google Scholar 

  32. J. L. Verble, T. J. Wieting, and P. R. Reed, Solid State Comm., 11: p. 941, 1972.

    Article  CAS  Google Scholar 

  33. S. Sugai and T. Ueda, Phys. Rev. B, 26 (12): p. 6554, 1982.

    Article  CAS  Google Scholar 

  34. A. M. Stacy and D. T. Hodul, Phys. Chem. Solids, 46 (4): p. 405–409, 1985.

    Article  CAS  Google Scholar 

  35. R. A. Neville and B. L. Evans, Phys. Stat. Sol. (b), 73: p. 597, 1976.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported, in part, by a grant from the United States Department of Energy (DOE# DE-FC22-90PC90029)

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bi, XX., Wang, Y., Lee, W. et al. Physical properties of nanocrystalline MoS2 and WS2 particles produced by CO2 laser pyrolysis. MRS Online Proceedings Library 327, 47–52 (1993). https://doi.org/10.1557/PROC-327-47

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-327-47

Navigation