Skip to main content
Log in

Spin-Dependent Transport in GaN Light Emitting Diodes

  • Articles
  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Electrically detected magnetic resonance (EDMR) is used to study recombination processes in two types of gallium nitride light emitting diodes: in m/i/n/n+- and InGaN/AlGaN double-heterostructure devices. In the MIS-diodes, two resonances at g=1.96 and 2.00, corresponding to the effective mass donor and a deep defect are observed at room temperature. At low temperatures, an acceptor-related resonance at g=2.06 is visible as well. After current degradation, the spectra are dominated by the defect resonance, indicating that the creation of this defect is responsible for the decreased electroluminescence efficiency. In the double-heterostrucrure devices, EDMR can only be observed below 60 K showing the g=2.00 defect resonance. The same defect resonance is also observed in conventional electron spin resonance experiments under illumination (light-induced ESR).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Zundel and J. Weber, Phys. Rev. B 39, 13549 (1989).

    Article  Google Scholar 

  2. W. Götz, N. M. Johnson, R. A. Street, H. Amano, I. Akasaki, Appl. Phys. Lett. 66, 1340 (1995)

    Article  Google Scholar 

  3. M. Fanciulli, T. Lei, T. D. Moustakas, Phys. Rev. B. 48, 15144 (1993)

    Article  Google Scholar 

  4. W. E. Carlos, J. A. Freitas, M. Asif Khan, D. T. Olson, J. N. Kuznia, Phys. Rev. B. 48, 17878 (1993)

    Google Scholar 

  5. M. Kunzer, U. Kaufmann, K. Maier, J. Schneider, N. Herres, I. Akasaki, H. Amano, Mat. Sci. Forum 143–147, 87 (1994)

    Article  Google Scholar 

  6. W. R. Glaser, T. A. Kennedy, K. Doverspike, L. B. Rowland, D. K. Gaskill, J. A. Freitas, M. Asif Kahn, D. T. Olson, J. N. Kuznia, D. K. Wickenden, Phys. Rev. B 51, 13326 (1995)

    Article  CAS  Google Scholar 

  7. I. Solomon, Solid State Commun. 20, 215 (1976)

    Article  CAS  Google Scholar 

  8. see e.g. K. Lips, W. Funs, J. Appl. Phys. 74, 3993 (1993)

    Google Scholar 

  9. N. M. Reinacher, M. S. Brandt, M. Stutzmann, B. K. Meyer, Verhandlungen der Deutschen Physikalischen Gesellschaft (VI) 30, 1282 (1995)

    Google Scholar 

  10. M. S. Brandt, International Workshop on Wide-Bandgap Nitrides, St. Louis, USA (1994)

    Article  CAS  Google Scholar 

  11. N. Koide, H. Kato, M. Sassa, S. Yamasaki, K. Manabe, M. Hashimoto, H. Amano, K. Hiramatsu, I. Akasaki, J. Crystal Growth 115, 639 (1991)

  12. U. Kaufmann, these proceedings

    Article  Google Scholar 

  13. T. Yanagisawa, Electronics Letters 22, 846 (1986)

    Article  CAS  Google Scholar 

  14. S. Nakamura, T. Mukai, M. Senoh, Appl. Phys. Lett. 64, 1687 (1994)

    Article  CAS  Google Scholar 

  15. W. E. Carlos, E. R. Glaser, T. A. Kennedy, S. Nakamura, Appl. Phys. Lett. 67, 2376 (1995)

    Article  Google Scholar 

  16. C. F. O. Graeff, M. Stutzmann, M. S. Brandt, Phys. Rev. B 49, 11028 (1994)

    Article  Google Scholar 

  17. D. Kaplan, I. Solomon, N. F. Mort, J. Phys. (Paris) 39, L51 (1978)

    Article  Google Scholar 

  18. D. J. Lepine, Phys. Rev. B 6, 436 (1972)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Brandt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brandt, M., Reinacher, N., Ambacher, O. et al. Spin-Dependent Transport in GaN Light Emitting Diodes. MRS Online Proceedings Library 395, 657–666 (1995). https://doi.org/10.1557/PROC-395-657

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-395-657

Navigation