Skip to main content
Log in

Slow Dielectric Relaxation of Supercooled Liqutos Investigated by Nonresonant Spectral Hole Burning

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

When supercooled propylene carbonate and glycerol are subjected to a large-amplitude, low-frequency electric field, a spectral hole develops in their dielectric relaxation that is significantly narrower than their bulk response. This observation of nonresonant spectral hole burning establishes that the non-Debye response is due to a distribution of relaxation times. Refilling of the spectral hole occurs abruptly, indicative of a single recovery rate that corresponds to the peak in the distribution. The general shape of the spectral hole is preserved during recovery, indicating negligible interaction between the degrees of freedom that responded to the field. All relevant features in the behavior can be characterized by a model for independently relaxing domains that are selectively heated by the large oscillation, and which recover via connection to a common thermal bath, with no direct coupling between the domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. See H. Scher, M.F. Shlesinger, J.T. Bendler, Phys. Today 44 (1), 26–34 (1991).

    Article  Google Scholar 

  2. See e.g., Relaxations in Complex Systems, edited by K.L. Ngai and G.B. Wright, J. Non-Cryst. Solids 172–174 (1994

    Google Scholar 

  3. K.S. Cole and R.H. Cole, J. Chem. Phys. 9, 341 (1941).

    Article  CAS  Google Scholar 

  4. G. Williams, M. Cook, P.J. Hams, J. Chem. Soc. Faraday Trans. 2 68, 1045 (1972).

    Article  Google Scholar 

  5. A.K. Jonscher, Dielectric Relaxation in Solids (Chelsea Dielectrics Press, London, 1982).

    Google Scholar 

  6. R. Richert, Chem. Phys. Lett. 216, 223 (1993).

    Article  CAS  Google Scholar 

  7. E. Donth, J. Non-Cryst. Solids 53, 325 (1982).

    Article  CAS  Google Scholar 

  8. C.T. Moynihan and J. Schroeder, J. Non-Cryst. Solids 160, 52 (1993).

    Article  CAS  Google Scholar 

  9. K. Schmidt-Rohr and H.W. Spiess, Phys. Rev. Lett. 66, 3020 (1991)

    Article  CAS  Google Scholar 

  10. A. Heuer, M. Wilhelm, H. Zimmermann, H.W. SpiessPhys. Rev. Lett. 75, 2851 (1995).

    Article  CAS  Google Scholar 

  11. M.T. Cicerone and M.D. Ediger, J. Chem. Phys. 103, 5684 (1995).

    Article  CAS  Google Scholar 

  12. B. Schiener, R. Böhmer, A. Loidl, R. V. Chamberlin, Science 274, 752 (1996).

    Article  CAS  Google Scholar 

  13. N. Bloembergen, E.M. Purcell, R. V. Pound, Phys. Rev. 73, 679 (1948).

    Article  CAS  Google Scholar 

  14. P.L. Kuhs and M.S. Conradi, J. Chem. Phys. 77, 1771 (1982).

    Article  Google Scholar 

  15. R. Böhmer, B. Schiener, J. Hemberger and R. V. Chamberlin, Z. Phys. B 99, 91 (1995); ibid p. 624 (1996).

    Article  Google Scholar 

  16. See e.g. T. Furukawa and K. Matsumoto, Jpn. J. Appl. Phys. 31, 840 (1992).

    Article  CAS  Google Scholar 

  17. C.A. Angeli, L. Boehm, M. Oguni, D.L. Smith, J. Mol. Liq. 56, 275 (1993).

    Article  Google Scholar 

  18. P.K. Dixon and S.R. Nagel, Phys. Rev. Lett. 61, 341 (1988).

    Article  CAS  Google Scholar 

  19. H. Fujimori and M. Oguni, J. Non-Cryst. Solids 172–174, 601 (1994).

    Article  Google Scholar 

  20. I.M. Hodge, Science 267, 1945 (1995).

    Article  CAS  Google Scholar 

  21. C.P. Lindsey and G.D. Patterson, J. Chem. Phys. 73, 3348 (1980).

    Article  CAS  Google Scholar 

  22. R. Böhmer, G. Hinze, G. Diezemann, B. Geil, and H. Sillescu, Europhys. Lett. 36, 55 (1996).

    Article  Google Scholar 

  23. I.M. Hodge, J. Non-Cryst. Solids 169, 211 (1994).

    Article  CAS  Google Scholar 

  24. G. Adams and J.H. Gibbs, J. Chem. Phys. 43, 139 (1965).

    Article  Google Scholar 

  25. J.R. Macdonald, J. Appl. Phys. 62, R51 (1987).

    Article  CAS  Google Scholar 

  26. R.V. Chamberlin and D.W. Kingsbury, J. Non-Cryst. Solids 172–174, 318 (1994).

    Article  Google Scholar 

  27. J.E. Andersen and R. Ullman, J. Chem. Phys. 47, 2178 (1967).

    Article  Google Scholar 

  28. J.C. Phillips, Rep. Prog. Phys. 59, 1133 (1996).

    Article  CAS  Google Scholar 

  29. R. Böhmer, K.L. Ngai, C.A. Angeli and D.J. Plazek, J. Chem. Phys. 99, 4201 (1993).

    Article  Google Scholar 

  30. Electron Paramagnetic Resonance of Transition Ions, A. Abragam and B. Bleaney, Oxford University Press, New York (1970), pgs. 574–583.

    Google Scholar 

  31. B.W. Faughnan and M.W.P. Strandberg, J. Phys. Chem. Solids 19, 155 (1961).

    Article  CAS  Google Scholar 

  32. C.A. Angeli, J. Am. Ceram. Soc. 51, 117 (1968).

    Article  Google Scholar 

Download references

Acknowledgement

We have benefitted from discussions with C.A. AngeIl, G. Diezemann, J. Hemberger, A. Heuer and H. SilIescu. The research was supported by the Deutsche Forschungsgemeinschaft through SFB 262. RVC has the pleasure of thanking R Bohmer, A. Loidl and H. SiIlescu for their hospitality during the course of this work.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chamberlin, R.V., Schiener, B. & Böhmer, R. Slow Dielectric Relaxation of Supercooled Liqutos Investigated by Nonresonant Spectral Hole Burning. MRS Online Proceedings Library 455, 117–125 (1996). https://doi.org/10.1557/PROC-455-117

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-455-117

Navigation