Skip to main content
Log in

A Two-Step Low-Temperature Process for a P−N Junction Formation Due to Hydrogen Enhanced Thermal Donor Formation in P-Type Czochralski Silicon

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

The incorporation of hydrogen into standard p-type Czochralski (Cz) silicon (≥1 Ωcm) by a 110 MHz plasma treatment at 260°C leads to the formation of an n-type region due to hydrogen enhanced thermal donor (TD) formation in hydrogenated regions of the wafer, if a subsequent annealing in air is applied at 450°C. Spreading resistance probe (SRP) and light beam induced current (LBIC) measurements were used for the experimental analysis. The p-n junction depth, i. e. the counter doping by TDs, depends on the initial doping level of the p-type substrate, and therefore on the post-hydrogenation annealing time. The penetration of the n-type region into the wafer bulk is driven by a rapid hydrogen diffusion. The essential process for a TD generation is the creation of metastable hydrogen molecular species around 260°C and their decay at 450°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I.R. Job, D. Borchert, Y.A. Bumay, W.R. Fahmer, G. Grabosch, I.A. Khorunzhii, A.G. Ulyashin, MRS Symp. Proc. Series 469, 101 (1997).

    Article  CAS  Google Scholar 

  2. A.G. Ulyashin, Y.A. Bumay, R. Job, G. Grabosch, D. Borchert, W.R. Fahrner, A.Y. Diduk, Solid State Phenomena 57–58, 189 (1997).

    Article  Google Scholar 

  3. A.G. Ulyashin, Y.A. Bumay, R. Job, W.R. Fahmer, Appl. Phys. (A) (1998), in press.

    Google Scholar 

  4. A.R. Brown, M. Claybourn, R. Murray, P.S. Nandhra, R.C. Newman, J.H. Tucker, Semicond. Sci. Technol. 3, 591 (1988).

    Article  CAS  Google Scholar 

  5. R. Murray, A.R. Brown, R.C. Newman, Mater. Sci. Eng. B. 4, 299 (1990).

    Article  Google Scholar 

  6. H.J. Stein, S.K. Hahn, Appl. Phys. Lett., 56, 63 (1990).

    Article  CAS  Google Scholar 

  7. H.J. Stein, S. Hahn, J. Electrochem. Soc. 142, 1242 (1995).

    Article  CAS  Google Scholar 

  8. H.J. Stein, S.K. Hahn, J. Appl. Phys. 75, 3477 (1994).

    Article  CAS  Google Scholar 

  9. F. Shimura, Oxygen in Silicon, Academic Press, New York (1994).

    Google Scholar 

  10. S.K. Estreicher, Mat. Sci. Eng. R 14, 319 (1995).

    Article  Google Scholar 

  11. R. Murray, Physica B 170, 115 (1991).

    Article  CAS  Google Scholar 

  12. S.J. Pearton, J.W. Corbett, M. Stavola, Hydrogen in Crystalline Semiconductors, Springer- Verlag, Berlin, Heidelberg, New York (1992).

    Book  Google Scholar 

  13. S.M. Myers, M.I. Baskes, H.K. Birnbaum, J.W. Corbett, G.G. DeLeo, S.K. Estreicher, E.E. Haller, P. Jena, N.M. Johnson, R. Kirchheim, S.J. Pearton, M.J. Stavola, Rev. Mod. Phys. 64, 559 (1992).

    Article  CAS  Google Scholar 

  14. A. Van Wieringen, N. Warmholtz, Physica 22, 849 (1956).

    Article  Google Scholar 

  15. J.I. Pankove, N.M. Johnson, Hydrogen in Semiconductors, Academic Press, New York (1991).

    Google Scholar 

  16. D. Mathiot, Phys. Rev. B 40, 5867 (1989).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Job, R., Fahrner, W.R., Kazuchits, N.M. et al. A Two-Step Low-Temperature Process for a P−N Junction Formation Due to Hydrogen Enhanced Thermal Donor Formation in P-Type Czochralski Silicon. MRS Online Proceedings Library 513, 337–342 (1998). https://doi.org/10.1557/PROC-513-337

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-513-337

Navigation