Skip to main content
Log in

A Continuum Plasticity Model for the Constitutive Behaviour of Foamed Metals

  • Published:
MRS Online Proceedings Library Aims and scope

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

A yield surface is proposed that can be fit to the plastic flow properties of a broad class of solids which exhibit plastic compressibility and different yield points in tension and compression. The yield surface is proposed to describe cellular solids, including foamed metals, and designed to be fit to three simple experimental results: (1) the compressive stress-strain response (including densification), (2) the difference between the tensile and compressive yield points and (3) the degree of compressibility of the foam, as measured by the lateral expansion during a uniaxial compression test. The model is implemented using finite elements and used to study the effects of plastic compressibility on two problems: the compression of a doubly notched specimen and indentation by a spherical indenter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. G. Evans, J. W. Hutchinson, and M. F. Ashby. to appear in Acta Mat., 1998.

  2. L. J. Gibson and M. F. Ashby. Cellular Solids: Structure and Properties.Cambridge University Press, Cambridge, 2nd edition, 1997.

    Book  Google Scholar 

  3. Y. Sugimura, J. Meyer, H. Bart-Smith, J. Grenstedt, and A. G. Evans. Acta Mat., 45 (12): 5245–5259, 1997.

    Article  CAS  Google Scholar 

  4. O. Prakash, H. Sang, and J. D. Embury. Mat. Sci. Engng., A199: 195–203, 1995.

    Article  CAS  Google Scholar 

  5. D. J. Sypeck, H. N. G. Wadley, H. Bart-Smith, S. Koehler, and A. G. Evans. Review of Progress in Quantitative Nondestructive Evaluation, 17, 1998.

  6. P. H. Thornton and C. L. Magee. Metallurgical Trans. A, 6: 1801–1807, 1975.

    Article  Google Scholar 

  7. M. C. Shaw and T. Sata. Int. J. Mech. Sci., 8: 469–478, 1966.

    Article  Google Scholar 

  8. T. C. Triantafillou, J. Zhang, T. L. Shercliff, L. J. Gibson, and M. F. Ashby. Int. J. Mech. Sci., 31 (9): 665–678, 1989.

    Article  Google Scholar 

  9. E. Andrews and L. J. Gibson. unpublished results.

  10. G. Gioux and L. J. Gibson. unpublished results.

  11. T. McCormack and L. J. Gibson unpublished results.

  12. L. J. Gibson, M. F. Ashby, J. Zhang, and T. C. Triantafillou. Int. J. Mech. Sci., 31 (9): 635–663, 1989.

    Article  Google Scholar 

  13. L. M. Kachanov. Foundations of the Theory of Plasticity.North-Holland, Amsterdam, 1971.

    Google Scholar 

  14. D. C. Drucker and W. Prager Q. Appl. Math., 10: 157–165, 1952.

    Article  Google Scholar 

  15. R. E. Miller. unpublished.

  16. D. Tabor. The Hardness of Metals. Clarendon Press, Oxford, 1951.

    Google Scholar 

  17. S. Biwa and B. Storhkers. J. Mech. Phys. Sol., 43 (8): 1303–1333, 1995.

    Article  Google Scholar 

  18. M. Wilsea, K. L. Johnson, and M. F. Ashby. Int. J. Mech. Sci., 17: 457–460, 1975.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, R.E., Hutchinson, J.W. A Continuum Plasticity Model for the Constitutive Behaviour of Foamed Metals. MRS Online Proceedings Library 521, 39–44 (1998). https://doi.org/10.1557/PROC-521-39

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-521-39

Navigation