Skip to main content
Log in

Bonding Regeneration: The Driving Force of Hetero-Epitaxial Diamond Grain Coalescence on (001) Silicon

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

The grain coalescence phenomenon in the growth of heteroepitaxial diamond film on (001) silicon substrate by microwave plasma chemical vapor deposition was examined by using high-resolution electron microscopy. It was shown that this phenomenon evidently occurs between two diamond grains with a small-angle tilt. The coalescence was completed after some more growth steps following the meeting of such two grains, indicating the difficulty for the lattice matching in grain boundary. By performing simulation of a step-by-step growth of two diamond grains on a (001) silicon substrate with molecular orbital PM3 method, it was shown that the bonding regeneration between the two grains is essential for the coalescence and the coalescence is only possible when the orientation difference between the grains is sufficiently small so as to allow efficient overlap of electron cloud in the grain boundary. This study indicates that single crystal diamond growth may be possible by the current CVD growth techniques via further reduction of the surface roughness to gain a heteroepitaxy with very small grain tilting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.V. Spitsyn, L.L. Bouilov and B.V. Derjaguin, J. Cryst. Growth 52, 219 (1981).

    Article  CAS  Google Scholar 

  2. M. Yoshikawa, H. Ishida, A. Ishitani, T. Murakami, S. Koizumi and T. Inuzuka, Appl. Phys. Lett. 57, 428 (1990).

    Article  CAS  Google Scholar 

  3. B.R. Stoner, and J.T. Glass, Appl. Phys. Lett. 60, 698(1992)

    Article  CAS  Google Scholar 

  4. B.R. Stoner, G.H.M. Ma, S.D. Wolter and J.T. Glass, Phys. Rev. B45, 11067 (1992).

    Article  Google Scholar 

  5. X. Jiang and C.-P. Klages, Diamond Relat. Mater. 2, 1112 (1993).

    Article  CAS  Google Scholar 

  6. X. Jiang, C.-P. Klages, R. Zachai, M. Hartweg and H.-J. Fiisser, Appl. Phys. Lett. 62, 3438 (1993).

    Article  CAS  Google Scholar 

  7. X. Jiang, C.-P. Klages, M. Rösler, R. Zachai, M. Hartweg and H.-J. Fisser, Appl. Phys. A 57, 483 (1993).

    Article  Google Scholar 

  8. S.D. Wolter, B.R. Stoner and J.T. Glass, P.J. Ellis, D.S. Buhaenko, C.E. Jenkins and P. Southworth, Appl. Phys. Lett. 62, 1215 (1993).

    Article  CAS  Google Scholar 

  9. Q.J. Chen, J. Yang and Z.D. Lin, Appl. Phys. Lett. 67, 1853(1995)

    Article  CAS  Google Scholar 

  10. Q.J. Chen, Y. Chen, J. Yang and Z.D. Lin, Thin Solid Films 274, 160 (1996).

    Article  CAS  Google Scholar 

  11. S.G. Song, C.L. Chen, T.E. Mitchell, L.B. Hackenberger and R. Messier, J. Appl. Phys. 79, 1813 (1996).

    Article  CAS  Google Scholar 

  12. M.G. Jubber and D.K. Milne, Phys. Stat. Sol. (a) 154, 185 (1996).

    Article  CAS  Google Scholar 

  13. M. Schreck and B. Stritzker, Phys. Stat. Sol. (a) 154, 197 (1996).

    Article  CAS  Google Scholar 

  14. Y. Von Kaenel, J. Stiegler, E. Blank, O. Chauvet, Ch. Hellwig and K. Plamann, Phys. Stat. Sol. (a) 154, 219 (1996).

    Article  Google Scholar 

  15. C.J. Chen, L. Chang, T.S. Lin and F.R. Chen, J. Mater. Res. 11, 1002 (1996).

    Article  CAS  Google Scholar 

  16. J.C. Angus and C.C. Hayman, Science 241, 913 (1988).

    Article  CAS  Google Scholar 

  17. A.T. Collins, Semicond. Sci. Technol. 4, 605 (1989).

    Article  CAS  Google Scholar 

  18. W.A. Yarbrough and R. Messier, Science 247, 688 (1990).

    Article  CAS  Google Scholar 

  19. X. Jiang and C.L. Jia, Appl. Phys. Letters 69, 3902 (1996).

    Article  CAS  Google Scholar 

  20. X. Jiang and C.L. Jia, J. Appl. Phys. 83 (5), 2511 (1998).

    Article  CAS  Google Scholar 

  21. X. Jiang and C.L. Jia, Appl. Phys. Lett. 67, 1197 (1995).

    Article  CAS  Google Scholar 

  22. C.L. Jia, K. Urban and X. Jiang, Phys. Rev. B52, 5164 (1995).

    Article  Google Scholar 

  23. Q.J. Chen, L.X. Wang, Z. Zhang, J. Yang, Z.D. Lin, Appl. Phys. Lett. 68, 176 (1996).

    Article  CAS  Google Scholar 

  24. D.A. Tucker, D.-K. Seo, M.-H. Whangbo, F.R. Sivazlian, B.R. Stoner, S.P. Bozeman, A.T. Sowers, R.J. Nemanich and J.T. Glass, Surf. Sci. 334, 179 (1995).

    Article  CAS  Google Scholar 

  25. X. Jiang and C.-P. Klages, Phys. Status Solidi A 154, 175 (1996).

    Article  CAS  Google Scholar 

  26. J.J.P. Stewart, J. Comput. Chem. 2, 209 (1989).

    Article  Google Scholar 

  27. M.J.S. Dewar and W.J. Thiel, J. Am. Chem. Soc. 99, 4899 (1977).

    Article  CAS  Google Scholar 

  28. R.Q. Zhang, W.L. Wang, J. Esteve and E. Bertran, Appl. Phys. Lett 69, 1086 (1996).

    Article  CAS  Google Scholar 

  29. R.Q. Zhang, W.L. Wang, J. Esteve and E. Bertran, Thin Solid Film, in press; and their following work.

  30. X. Jiang, R.Q. Zhang, G. Yu and S.T. Lee, unpubmitted.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, R.Q., Jiang, X., Jia, C.L. et al. Bonding Regeneration: The Driving Force of Hetero-Epitaxial Diamond Grain Coalescence on (001) Silicon. MRS Online Proceedings Library 529, 133–138 (1998). https://doi.org/10.1557/PROC-529-133

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-529-133

Navigation