Skip to main content
Log in

The Origin of Mis-Oriented Diamond Grains Nucleated Directly on (001) Silicon Surface

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

The origin of mis-oriented diamond grains frequently observed in heteroepitaxial diamond films on (001) silicon surfaces was studied. By statistically analyzing the in-plane rotation angles of diamond grains in scanning electron microscopy observations, it was found that the distribution of the grain orientation is not random and two satellite distribution peaks at about 20° and 30° accompany the main distribution peak at zero degree referenced to the <110> direction of substrate. The interface structure corresponding to the main distribution peak at zero degree of oriented diamond growth has been proposed in our previous studies. In this study, our molecular orbital PM3 simulation of a step-by-step diamond nucleation further reveals two other metastable diamond/silicon interfacial structures. The orientations of the corresponding diamond grains are parallel to the (001) silicon surface but with in-plane rotations of 20° and 30° respectively with respect to the <110> direction. We relate these two mis-oriented growths to the two satellite peaks of grain orientation distribution. Based on this study, the possibility in experiment to reduce the formation of mis-oriented configurations and to obtain a perfectly oriented diamond growth is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Jiang and C.-P. Klages, Diamond Relat. Mater. 2, 1112 (1993).

    Article  CAS  Google Scholar 

  2. X. Jiang, C.-P. Klages, R. Zachai, M. Hartweg and H.-J. Füsser, Appl. Phys. Lett. 62, 3438 (1993).

    Article  CAS  Google Scholar 

  3. X. Jiang, C.-P. Klages, M. Rösler, R. Zachai, M. Hartweg and H.-J. Fiisser, Appl. Phys. A 57, 483 (1993).

    Article  Google Scholar 

  4. S.D. Wolter, B.R. Stoner and J.T. Glass, P.J. Ellis, D.S. Buhaenko, C.E. Jenkins and P. Southworth, Appl. Phys. Lett. 62, 1215 (1993).

    Article  CAS  Google Scholar 

  5. Q.J. Chen, J. Yang and Z.D. Lin, Appl. Phys. Lett. 67, 1853(1995)

    Article  CAS  Google Scholar 

  6. Q.J. Chen, Y. Chen, J. Yang and Z.D. Lin, Thin Solid Films 274, 160 (1996).

    Article  CAS  Google Scholar 

  7. S.G. Song, C.L. Chen, T.E. Mitchell, L.B. Hackenberger and R. Messier, J. Appl. Phys. 79, 1813 (1996).

    Article  CAS  Google Scholar 

  8. M.G. Jubber and D.K. Milne, Phys. Stat. Sol. (a) 154, 185 (1996).

    Article  CAS  Google Scholar 

  9. M. Schreck and B. Stritzker, Phys. Stat. Sol. (a) 154, 197 (1996).

    Article  CAS  Google Scholar 

  10. Y. Von Kaenel, J. Stiegler, E. Blank, O. Chauvet, Ch. Hellwig and K. Plamann, Phys. Stat. Sol. (a) 154, 219 (1996).

    Article  Google Scholar 

  11. X. Jiang and C.L. Jia, Appl. Phys. Lett. 69, 3902 (1996).

    Article  CAS  Google Scholar 

  12. X. Jiang and C.L. Jia, J. Appl. Phys. 83 (5), 2511 (1998).

    Article  CAS  Google Scholar 

  13. J.C. Angus and C.C. Hayman, Science 241, 913 (1988).

    Article  CAS  Google Scholar 

  14. A.T. Collins, Semicond. Sci. Technol. 4, 605 (1989).

    Article  CAS  Google Scholar 

  15. W.A. Yarbrough and R. Messier, Science 247, 688 (1990).

    Article  CAS  Google Scholar 

  16. X. Jiang and C.-P. Klages, Phys. Status Solidi A 154, 175 (1996).

    Article  CAS  Google Scholar 

  17. J.J.P. Stewart, J. Comput. Chem. 2, 209 (1989).

    Article  Google Scholar 

  18. M.J.S. Dewar and W.J. Thiel, J. Am. Chem. Soc. 99, 4899 (1977).

    Article  CAS  Google Scholar 

  19. B.H. Besler, W.L. Hase and K.C. Hass, J. Phys. Chem. 96, 9369 (1992).

    Article  CAS  Google Scholar 

  20. P. Defik, A. Gali, G. Sczigel and H. Ehrhardt, Diamond Rel. Mater. 4, 706 (1995).

    Article  Google Scholar 

  21. R. Colle and K.K. Stavrev, J. Solid State Chem. 117, 427 (1995).

    Article  CAS  Google Scholar 

  22. H.D. Jeong, S. Ryu, Y.S. Lee and S. Kim, Surf. Sci. 334, L1226(1995).

    Article  Google Scholar 

  23. R.Q. Zhang, W.L. Wang, J. Esteve and E. Bertran, Thin Solid Film, in press; and their following work.

  24. R.Q. Zhang, W.L. Wang, J. Esteve and E. Bertran, Appl. Phys. Lett. 69, 1086 (1996).

    Article  CAS  Google Scholar 

  25. X. Jiang, R.Q. Zhang, G. Yu and S.T. Lee, Phys. Rev. B, submitted.

  26. W.S. Verwoerd, Surf. Sci. 304, 24 (1994); and his related work.

    Article  CAS  Google Scholar 

  27. C. Sun, W.J. Zhang, C.S. Lee, I. Bello, and S.T. Lee, Diamond Rel. Mater., submitted.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, R.Q., Zhang, W.J., Sun, C. et al. The Origin of Mis-Oriented Diamond Grains Nucleated Directly on (001) Silicon Surface. MRS Online Proceedings Library 529, 139–144 (1998). https://doi.org/10.1557/PROC-529-139

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-529-139

Navigation