Skip to main content
Log in

Atomistic Aspects of Fracture Modelling in the Framework of Continuum Mechanics

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

The validity and predictive capability of continuum models of fracture rests on basic informations whose origin lies at the atomic scale. Examples of such crucial informations are, e.g., the explicit form of the cohesive law in the Barenblatt model and the shear-displacement relation in the Rice-Peierls-Nabarro model. Modem approaches to incorporate atomic-level information into fracture modelling require to increase the size of atomic-scale models up to millions of atoms and more; or to connect directly atomistic and macroscopic, e.g. finite-elements, models; or to pass information from atomistic to continuum models in the form of constitutive relations. A main drawback of the atomistic methods is the complexity of the simulation results, which can be rather difficult to rationalize in the framework of classical, continuum fracture mechanics. We critically discuss the main issues in the atomistic simulation of fracture problems (and dislocations, to some extent); our objective is to indicate how to set up atomistic simulations which represent well-posed problems also from the point of view of continuum mechanics, so as to ease the connection between atomistic information and macroscopic models of fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Liebowitz (ed.), “Fracture: An Advanced Treatise. Vol.11: Mathematical Fundamentals”, Academic Press, New York, 1968; G.C. Sih, H. Nisitani and T. Ishihara (eds.), “Role of Fracture Mechanics in Modem Technology”, Elsevier, Amsterdam, 1987; M.H. Aliabadi and D.P. Rooke, “Numerical Fracture Mechanics”, Kluwer, Dordrecht, 1991.

    Google Scholar 

  2. A.A. Griffith, Philos. Trans. Royal Soc. (London) A 221 (1920) 163.

    Google Scholar 

  3. R.L. Blumberg Selinger, J.J Mecholsky, A. E. Carlsson and E. R. Fuller Jr (eds.), “Fracture-Instability Dynamics, Scaling and Ductile/Brittle Behavior”, MRS vol. 409, Pittsburgh, 1996; A.K. Cheetam et al., J. Comput.-Aided Mater. Design 3 (1996) 1.

  4. W.W. Gerberich et al., Acta Metall. Mater. 43 (1995) 1569.

    Article  CAS  Google Scholar 

  5. W.T. Ashurst and W.G. Hoover, Phys. Rev., B 14 (1976) 1465.

    Article  Google Scholar 

  6. P.S. Lomdahl et al., Int. J. Mod. Phys. C42 (1993) 1075.

    Article  Google Scholar 

  7. F.F Abraham et al., Phys. Rev. Lett. 73 (1994) 272.

    Article  CAS  Google Scholar 

  8. B.L. Holian and R. Ravelo, Phys. Rev. B 51 (1995) 11275.

    Article  Google Scholar 

  9. A. Nakano, R.K. Kalia and P. Vashista, Phys. Rev. Lett. 73 (1994) 2336.

    Article  CAS  Google Scholar 

  10. S.J. Zhou et al., Phys. Rev. Lett. 76 (1996) 2318.

    Article  CAS  Google Scholar 

  11. D. Mullins and A. Dokainish, Phil. Mag. A 46 (1982) 771.

    Article  Google Scholar 

  12. S. Kohloff, P. Gumbsch and H.F. Fischmeister, Phil. Mag. A 64 (1991) 851.

    Article  Google Scholar 

  13. E.B. Tadmor, M. Ortiz and R. Phillips, Phil. Mag. A 73 (1996) 1529.

    Article  Google Scholar 

  14. R. Miller and R. Phillips, Phil. Mag. A 73 (1996) 803.

    Article  Google Scholar 

  15. E. Kaxiras and M.S. Duesbery, Phys. Rev. Lett. 70 (1993) 3752.

    Article  CAS  Google Scholar 

  16. F. Cleri, S. Yip, D. Wolf and S.R. Phillpot, Phys. Rev. Lett. 79 (1997) 1309; Acta Mater. 45 (1997) 4993.

    Article  CAS  Google Scholar 

  17. A.E.H. Love, Appendix B in “A Treatise on the Mathematical Theory of Elasticity”, 4th ed., F. Dover, New York, 1944; M. Born and K. Huang, “Dynamical Theory of Crystal Lattices”. Oxford University Press, Oxford, 1954.

  18. Cleri, S.R. Phillpot, D. Wolf and S. Yip, J. Am. Cer. Soc. 81 (1998) 503.

    Google Scholar 

  19. M.P. Allen and D.J. Tildesley, “Computer simulation of liquids”, Oxford Science Publications, Oxford, 1989.

    Google Scholar 

  20. M. Parrinello and A. Rahman, J. Appl. Phys. 52 (1981) 7182.

    Article  CAS  Google Scholar 

  21. K.S. Cheung and S. Yip, Phys. Rev. Lett. 65 (1990) 2804.

    Article  CAS  Google Scholar 

  22. R.G. Hoagland, M.S. Daw and J.P. Hirth, J. Mater. Res. 6 (1991) 2565.

    Article  CAS  Google Scholar 

  23. S.G. Lekhnitskii, pp. 153–162 in “Theory of Elasticity of an Anisotropic Elastic Body”, Holden-Day, San Francisco, 1963.

    Google Scholar 

  24. V.Z. Parton and E.M. Morozov, pp. 103–123 in “Mechanics of Elastic-Plastic Fracture”, Hemisphere, Washington, 1989.

    Google Scholar 

  25. V. Bulatov, F.F. Abraham, L. Kubin, B Devincre and S. Yip, Nature 391 (1998) 669.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cleri, F. Atomistic Aspects of Fracture Modelling in the Framework of Continuum Mechanics. MRS Online Proceedings Library 538, 441–451 (1998). https://doi.org/10.1557/PROC-538-441

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-538-441

Navigation