Skip to main content
Log in

Fundamental and Technological Aspects of Actinide Oxide Pyrochlores: Relevance for Immobilization Matrices

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Polycrystalline pyrochlore oxides consisting of selected f elements (lanthanides and actinides) and Zr and Hf have been prepared and characterized. Characterization to date has been primarily by X-ray diffraction, both at room and at elevated temperatures. Initial studies concentrated on selected lanthanides and the Np, Pu and Am analogs (reported here) but have been extended to the other actinide elements through Cf. Data from these studies have been used to establish a systematic correlation regarding the fundamental materials science of these particular pyrochlores and structurally related fluorite-type dioxides. In addition to pursuing their materials science, we have addressed some potential technological applications for these materials. Some of the latter concern: (1) immobilization matrices; (2) materials for transmutation concepts; and (3) special nuclear fuel forms that can minimize the generation of nuclear wastes. For f elements that display both a III and IV oxidation state in oxide matrices, the synthetic path required for producing the desired pyrochlore oxide is dictated by their pseudo-oxidation potential the stability of the compound towards oxygen uptake. For the f elements that display an oxidationreduction cycle for pyrochlore-dioxide solid solution, X-ray diffraction can be used to identify the composition in the oxidation-reduction cycle, the oxygen stoichiometry and/or the composition. This paper concentrates on the Np, Pu and Am systems, and addresses the above aspects, the role of the crystal matrix in controlling the ceramic products as well as discussingsome custom-tailored materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. E. Ringwood, S. E. Kesson, K. D. Reeve, D. M. Levins and E. J. Ramm in Radioactive Waste Forms for the Future, eds. W. Lutze and R. C. Ewing, Elsevier, Amsterdam, 1988, pp.233–334.

  2. A. E. Ringwood, S. E. Kesson, N. G. Ware, W. Hibberson and A. Major, Nature 278,219(1979).

    Article  CAS  Google Scholar 

  3. E. R. Vance, MRS Bulletin XIX, No.12, Dec., 1994, 28–32.

    Google Scholar 

  4. A. B. Harker, in Radioactive Waste Forms for the Future, eds. W. Lutze and R. C. Ewing, Elsevier, Amsterdam, 1988, pp.335–392.

  5. W. Lutze and R. C. Ewing, in Radioactive Waste Forms for the Future, eds. W. Lutze and R. C. Ewing, Elsevier, Amsterdam, 1988, pp.699–740.

  6. S. S. Shoup, C. E. Bamberger and R. G. Haire, J. Am. Ceram. Soc. 79[6], 1489 (1996).

    Article  CAS  Google Scholar 

  7. J. M. Longo, P. M. Raccah, J. B. Goodenough, Mat. Res. Bull. 5, 191(1969).

    Article  Google Scholar 

  8. M. A. Subramanian, G. Aravamudan and G. V. Subba Rao, Prog. Solid State Chem. 15, 55(1983).

    Article  CAS  Google Scholar 

  9. H. Kamizono, I. Hayakawa and S. Muraoka, J. Am. Ceram. Soc., 74, 863(1991).

    Article  CAS  Google Scholar 

  10. H. Hayakawa, and H. Kamizono, J. Nucl. Mat. 202, 163(1993).

    Article  CAS  Google Scholar 

  11. I. Hayakawa and H. Kamizono, J. Mat. Science 28, 513(1993).

    Article  CAS  Google Scholar 

  12. I. Hayakawa and H. Kamizono, Mat. Res. Soc. Symposium Proc. 302, 257(1992).

    Google Scholar 

  13. L. A. Chick and R. P. Turcotte, Batelle Pacific Northwest Lab., Richland WA, Rept. PNL-4576, 1983.

    Google Scholar 

  14. K. P. Hart, E. R. Vance, M. W. A. Stewart, J. Weir, M. L. Carter, M. Hambleyt, A. Brownscomb, R. A. Day, S. Leung, C. J. Ball, B. Ebbinghaus, L. Gray and T. Kan, Mat. Res. Soc. Symp. Proc., 506, 161(1998).

    Article  CAS  Google Scholar 

  15. C. B. Chakoumakos and R. C. Ewing, Mat. Res. Soc. Symp. 44, 641(1985).

    Article  CAS  Google Scholar 

  16. W. L. Gong, W. Lutze and R. C. Ewing, Mat. Res. Soc., Fall Symp., 1998 (in press).

    Google Scholar 

  17. D. Williams, Ames Lab., Ames, IA, Rep. IS-1052, 1962 (modified for PC use).

    Google Scholar 

  18. D. Smith and K. Smith, Micro-Powd, Materials Data, Inc., Livennmore, CA, 1992.

    Google Scholar 

  19. R. G. Haire and L. Eyring, in Handbook on the Physics and Chemistry of Rare Earth, Vol. 18, Lanthanides and Actinides: Chemistry, eds. K. A. Gschneidner Jr., L. Eyring, G. R. Choppin and G. H. Lander, North-Holland, Amsterdam, pp. 449–505, 1994.

    Google Scholar 

  20. H. Radzewitz, in Kernforshungzentrum Rep. N. 433, 1966, Karlsrhule, Germany.

    Google Scholar 

  21. D. F. Carroll, J. Am. Cerm. Soc., 46, 194(1963).

    Article  CAS  Google Scholar 

  22. V. M. Oversby, C. C. McPheeters, C. Delguerdre, J. M. Paratte, J. Nuclear Mat., 245, 17(1997).

    Article  CAS  Google Scholar 

  23. E. Aleshin and R. Roy, J. Am. Chem. Soc., 45, 18 (1962).

    CAS  Google Scholar 

  24. J. M. Longo, P. M. Raccah and J. B. Goodenough, Mat. Res. Bull, 191, 4 (1969).

    Google Scholar 

  25. O. Knop, F. Brisse, L. Castelliz and A. Sutarno, Can. J. Chem., 43, 2812 (1965).

    Article  CAS  Google Scholar 

  26. J. Pannetier and J. Lucas, Mat. Res. Bull., 5, 797(1970).

    Article  CAS  Google Scholar 

  27. R. D. Shannon, Acta. Cryst. A32, 751(1976).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raison, P.E., Haire, R.G., Sato, T. et al. Fundamental and Technological Aspects of Actinide Oxide Pyrochlores: Relevance for Immobilization Matrices. MRS Online Proceedings Library 556, 3 (1998). https://doi.org/10.1557/PROC-556-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/PROC-556-3

Navigation