Skip to main content
Log in

Field Emission from Carbon Films Deposited by Controlled-Low-Energy Beams and CVD Sources

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

The principal interests in this work are energetic-beam control of carbon-film properties and the roles of doping and surface morphology in field emission. Carbon films with variable sp3-bonding fraction were deposited on n-type Si substrates by ArF (193 nm) pulsed-laser ablation (PLA) of a pyrolytic graphite target, and by direct metal ion beam deposition (DMIBD) using a primary Cs+ beam to generate the secondary C- deposition beam. The PLA films are undoped while the DMIBD films are doped with Cs. The kinetic energy (KE) of the incident C atoms/ions was controlled and varied over the range from ∼25 eV to ∼175 eV. Earlier studies have shown that C films’ sp3-bonding fraction and diamond-like properties can be maximized by using KE values near 90 eV. The films’ surface morphology, sp3-bonding fraction, and Cs-content were determined as a function of KE using atomic force microscopy, TEM/EELS, Rutherford backscattering and nuclear reaction measurements, respectively. Field emission (FE) from these very smooth undoped and Cs-containing films is compared with the FE from two types of deliberately nanostructured carbon films, namely hot-filament chemical vapor deposition (HF-CVD) carbon and carbon nanotubes grown by plasma-enhanced CVD. Electron field emission (FE) characteristics were measured using ∼25-μm, ∼5-μm and ∼1-μm diameter probes that were scanned with ∼75 nm resolution in the x-, y-, and z-directions in a vacuum chamber (∼5 × 10-7 torr base pressure) equipped with a video camera for viewing. The hydrogen-free and very smooth a-D or a-C films (with high or low sp3 content, and with or without ∼1% Cs doping) produced by PLD and DMIBD are not good field emitters. Conditioning accompanied by arcing was required to obtain emission, so that their subsequent FE is characteristic of the arc-produced damage site. However, deliberate surface texturing can eliminate the need for conditioning, apparently by geometrical enhancement of the local electric field. But the most promising approach for producing macroscopically flat FE cathodes is to use materials that are highly nanostructured, either by the deposition process (e.g. HF-CVD carbon) or intrinsically (e.g. carbon nanotubes). HF-CVD films were found to combine a number of desirable properties for FE displays and vacuum microelectronics, including the absence of conditioning, low turn-on fields, high emission site density, and apparent stability and durability during limited long-term testing. Preliminary FE measurements revealed that vertically aligned carbon nanotubes are equally promising.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. See for example J. H. Jung, B. K. Ju, Y. H. Lee, J. Jang, and M. H. Oh, IEEE Elec. Dev. Lett. 18, 197 (1999).

    Article  Google Scholar 

  2. See for example A. A. G. Driskill-Smith, D. G. Hasko, and H. Ahmed, Appi. Phys. Lett. 75, (1999).

  3. C. A. Spindt, I. Brodie, L. Humphrey, and E. R. Westerberg, J. Appl. Phys. 47, 5248 (1976).

    Article  CAS  Google Scholar 

  4. F. J. Himpsel, J. A. Knapp, J. A. Van Vechten, and D. E. Eastman, Phys. Rev. B 20, 624 (1979).

    Article  CAS  Google Scholar 

  5. J. Van der Weide, and R. J. Nemanich, Appl. Phys. Left. 62, 1878 (1993).

    Article  Google Scholar 

  6. W. A. de Heer, A. Chatelain, and D. Ugarte, Science 270, 1179 (1995).

    Article  Google Scholar 

  7. D. Zhou, A. R. Krauss, T. D. Corrigan, T. G. McCauley, R. P. H. Chang, and D. M. Gruen, J. Electrochem. Soc. 144, 224 (1997).

    Article  Google Scholar 

  8. W. Zhu, G. P. Kochanski, and S. Jin, Science 282, 1471 (1998).

    Article  CAS  Google Scholar 

  9. B. F. Coll, J. E. Jaskie, J. L. Markham, E. P. Menu, A. A. Talin, and P. von Allmen, in Covalently-Bonded Disordered Thin-Film Materials, ed. by M. P. Siegal, W. Milne, and J. E. Jaskie, Materials Research Society, Warrendale, PA, 1998.

  10. V. I. Merkulov, D. H. Lowndes, and L. R. Baylor, Appl. Phys. Lett. 75, 1228 (1999).

    Article  CAS  Google Scholar 

  11. J. Robertson, J. Vac. Sci. Technol. B 17, 659 (1999).

    Article  CAS  Google Scholar 

  12. F. Y. Chuang, C. Y. Sun, T. T. Chen, and I. N. Lin, Appl. Phys. Lett. 69, 3504 (1996).

    Article  CAS  Google Scholar 

  13. O. Groning, O. M. Kuttel, P. Groning, and L. Schlapbach, Appl. Surf Sci. 111, 135 (1997).

    Article  Google Scholar 

  14. A. V. Karabutov, V. I. Konov, V. G. Ralchenko, E. D. Obraztsova, V. D. Frolov, S. A. Uglov, H.-J. Scheibe, V. E. Strelnitskij, and V. I. Polyakov, Diamond and Related Mater. 7, 802 (1998).

    Article  CAS  Google Scholar 

  15. C. Park, H. Park, Y.-K. Hong J. S. Kim, and J. K. Kim, Appl. Surf Sci. 111, 140 (1997).

    Article  CAS  Google Scholar 

  16. J. H. Jung, B. K. Ju, Y. H. Lee, J. Jang, and M. f-t. Oh, IEEE Elec. Dev. Lett. 18, 197 (1997).

    Article  CAS  Google Scholar 

  17. V. G. Litovchenko, A. A. Evtukh, R. I. Marchenko, N. I. Klyui, and V. A. Semenovich, Appl. Surf Sci. 111, 213 (1997).

    Article  CAS  Google Scholar 

  18. N. S. Xu, J. C. She, S. E. Huq, J. Chen, and S. Z. Deng, Appl. Phys. Lett. 73, 3668 (1998).

    Article  CAS  Google Scholar 

  19. J. C. She, S. E. Huq, J. Chen, S. Z. Deng, and N. S. Xu, J. Vac. Sci. Technol. B 17, 592 (1999).

    Article  CAS  Google Scholar 

  20. Y. Park, Y. W. Ko, M. H. Sohn, and S. I. Kim, Mater. Res. Soc. Symp. Proc. 396, 623 (1996).

    Article  CAS  Google Scholar 

  21. S. I. Kim, Rev. Sci. Instr. 67, 908 (1996).

    Article  CAS  Google Scholar 

  22. M. H. Sohn, Y. O. Ahn, Y. W. Ko, S. R. Hah, T. E. Fischer, and S. I. Kim, J. Vac. Sci Technol. A 16, 3554 (1998).

    Article  CAS  Google Scholar 

  23. Y. W. Ko and S. I. Kim, J. Vac. Sci. Technol. A 15, 2750 (1997).

    Article  CAS  Google Scholar 

  24. S. P. Bozeman, S. M. Camphausen, J. J. Cuomo, S. I. Kim, Y. O. Ahn, and Y. Ko, J. Vac. Sci. Technol. A 15, 1729 (1997).

    Article  CAS  Google Scholar 

  25. V. 1. Merkulov, D. H. Lowndes, Y. Y. Wei, and G. Eres, “Patterned growth of individual and multiple vertically-aligned carbon nanotubes,” submitted to Applied Physics Letters.

  26. D. H. Lowndes, V. I. Merkulov, A. A. Puretzky, D. B. Geohegan, G. E. Jellison, Jr., X. M. Rouleau, and T. Thundat, Mat. Res. Soc. Symp. Proc. 526, 325 (1998).

    Article  CAS  Google Scholar 

  27. D. H. Lowndes, V. I. Merkulov, A. J. Pedraza, J. D. Fowlkes, A. A. Puretzky, D. B. Geohegan, and G. E. Jellison, Jr., Symposium on Surface Engineering: Science and Technology I. Proc. of TMS 1999 Annual Meeting, 1999 (in press).

    Google Scholar 

  28. V. I. Merkulov, D. H. Lowndes, G. E. Jellison, Jr., A. A. Puretzky, and D. B. Geohegan, Appl. Phys. Lett. 73, 2591 (1998).

    Article  CAS  Google Scholar 

  29. A. A. Puretzky et al., Appl. Surf Sci. 96-98, 859 (1996).

    Article  CAS  Google Scholar 

  30. D. B. Geohegan and A. A. Puretzky, Mat. Res. Soc. Symp. Proc. 397, 55 (1996).

    Article  CAS  Google Scholar 

  31. This method of producing a C- beam was developed by SKION Corp. and has been used to produce negative-ion beams of several metals.

  32. R. D. Forrest, A. P. Burden, S. R. P. Silva, L. K. Cheah, and X. Shi, Appl. Phys. Lett. 73, 3784 (1998).

    Article  CAS  Google Scholar 

  33. Y. W. Ko and S. I. Kim, J Vac. Sci. Technol. A 15, 2750 (1997).

    Article  CAS  Google Scholar 

  34. V. I. Merkulov, D. H. Lowndes, and L. R. Baylor, Appl. Phys. Lett. 75, 1228 (1999).

    Article  CAS  Google Scholar 

  35. A. Gohl, A. N. Alimova, T. Habermann, A. L. Mescheryakova, D. Nau, V. V. Zhirnov, and G. Muller, J. Vac. Sci. Technol. B 17, 670 (1999).

    Article  CAS  Google Scholar 

  36. V. I. Merkulov, D. H. Lowndes, and L. R. Baylor, “Field emission and nanostructure of carbon films, ” submitted to Amorphous and Nanostructured Carbon, Symposium U of the Fall, 1999 MRS meeting, Boston, MA (in press).

    Book  Google Scholar 

  37. R. H. Fowler and L. W. Nordheim, Proc. Roy. Soc. London, Ser. A 119, 173 (1928).

    CAS  Google Scholar 

  38. Further information can be obtained from SKION Corp.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lowndes, D.H., Merkulov, V.I., Baylor, L.R. et al. Field Emission from Carbon Films Deposited by Controlled-Low-Energy Beams and CVD Sources. MRS Online Proceedings Library 585, 271–282 (1999). https://doi.org/10.1557/PROC-585-271

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-585-271

Navigation