Skip to main content
Log in

Atomistic Modeling of Ultrathin Fe Films on Cu (111)

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

We have used the embedded-atom method (EAM) to perform molecular-dynamics (MD) simulations of iron films grown on Cu (111). The iron atoms were randomly deposited, one at a time, above the surface just within the force range of the nearest surface atom. The growth mode is discussed by following the iron film coverage for an incident-atom energy ranged from 0.5eV to 15eV. A transition from island to layer by layer growth is observed as a function of incident energy. The effect of deposition rate is also studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Vaterlaus, C. Stamm, U. Maier, M. G. Pini, P. Politi, and D. Pescia, Phys. Rev. Lett. 84, 2247 (2000).

    Article  CAS  Google Scholar 

  2. A. Abanov, V. Kalatsky, V. L. Pokrovsky, and W. M. Saslow, Phys. Rev. B 51, 1023 (1995).

    Article  CAS  Google Scholar 

  3. J. Shen, H. Jenniches, Ch.V. Mohan, J. Barthel, M. Klaua, P. Ohresser, and J. Kirschner, Europhys. Lett. 43, 349 (1998).

    Article  CAS  Google Scholar 

  4. R. D. Etlerbrock, A. Fuest, A. Schatz, W. Keune, and R. A. Brand, Phys. Rev. Lett. 74. 3053 (1995).

    Article  Google Scholar 

  5. A. Theobald, O. Schaff, C.J. Hirschmugl, V. Fernandez, K.-M. Schindler, M. Polcik, and A. M. Bradshaw, Phys. Rev. B 59, 2313 (1999).

    Article  CAS  Google Scholar 

  6. D. Tian, F. Jona, P. M. Marcus, Phys. Rev. B 45, 11216 (1992).

    Article  CAS  Google Scholar 

  7. P. Ohresser, J. Shen, J. Barthel, M. Zheng, C. V. Mohan, M. Klaua, and J. Kirschner, Phys. Rev. B 59, 3696 (1999).

    Article  CAS  Google Scholar 

  8. T. J. Raekerd and A. E. DePristo, Surf. Sci. 317, 283 (1994).

    Article  Google Scholar 

  9. A. Saúl and M. Weissman, Phys. Rev. B 60, 4982 (1999).

    Article  Google Scholar 

  10. L. T. Wille and H. Dreyssé, J. Appl. Phys. 85, 4622 (1999).

    Article  CAS  Google Scholar 

  11. N. Levanov, V. S. Stepanyuk, W. Hergert, O. S. Trushin, and K. Kokko, Surf. Sci. 400, 54 (1998).

    Article  CAS  Google Scholar 

  12. S. M. Foiles, M. I. Baskes, and M. S. Daw, Phys. Rev. B 33, 7983 (1986).

    Article  CAS  Google Scholar 

  13. Z. Yang and R. A. Johnson, Modelling Simul. Mater. Sci. Eng. 1, 707 (1993)

    Article  CAS  Google Scholar 

  14. R. A. Johnson, Phys. Rev. B 41, 9717 (1990).

    Article  CAS  Google Scholar 

  15. P. Ohresser, J. Shen, J. Barthel, M. Zheng, C. V. Mohan, M. Klaua, and J. Kirschner, Phys. Rev. B 59, 3696 (1999).

    Article  CAS  Google Scholar 

  16. C. M. Gilmore and J. A. Sprague, Phys. Rev. B 44, 8950 (1991).

    Article  CAS  Google Scholar 

  17. W. D. Luedtke and U. Landman, Phys. Rev. B 44, 5970 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rakotomahevitra, A., Wille, L.T. & Rakotomalala, M.S. Atomistic Modeling of Ultrathin Fe Films on Cu (111). MRS Online Proceedings Library 616, 183–188 (2000). https://doi.org/10.1557/PROC-616-183

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-616-183

Navigation