Skip to main content
Log in

Theory and Modelling of Field-Induced Electron Emission

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

This paper addresses issues in the theory of field-induced electron emission. First, it summarises our present understanding of the theory of Fowler-Nordheim (FN) plots, and shows the relationship between a recent precise (in standard FN theory) approach to the interpretation of the FN-plot intercept and older approximate approaches. Second, it comments on the interpretation of FN plots taken from semiconductor field emitters. Third, it summarises the main points of a recent hypothesis about the mechanism of field-induced emission from carbonbased films and other electrically nanostructured heterogeneous (ENH) materials. Weaknesses in previous hypotheses are noted. It is hypothesised that thin films of all ENH materials, when deposited on a conducting substrate, will emit electrons in appropriate circumstances. Such films emit electrons at low macroscopic fields because they contain conducting nanostructure inside them: this structure generates sufficient geometrical field enhancement near the film/vacuum interface that more-or-less normal Fowler-Nordheim emission can occur. In connection with experiments on amorphous carbon films carried out by a group in Fribourg, it is shown that nanostructure of the size measured by scanning probe techniques should be able to generate field enhancement of the size measured in field electron spectroscopy experiments. This result provides a quantitative corroboration of other work suggesting that emission from amorphous carbon films is primarily due to geometrical field enhancement by nanostructures inside the film. Some counter-arguments to the internal-field-enhancement hypothesis are considered and disposed of. Some advantages of ENH materials as broad-area field emission electron sources are noted; these include control of material design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  1. R. G. Forbes, Solid State Electronics (submitted for publication).

  2. R. H. Fowler and L. W. Nordheim, Proc. R. Soc. Lond. A119, 173 (1928).

    Google Scholar 

  3. E. L. Murphy and R. H. Good, Phys. Rev. 102, 1464 (1956).

    Article  CAS  Google Scholar 

  4. R. G. Forbes, J. Vac. Sci. Technol. B17, 526 (1999).

    Article  Google Scholar 

  5. F. M. Charbonnier and E. E. Martin, J. Appl. Phys. 33, 1897 (1962).

    Article  Google Scholar 

  6. L. N. Dobretsov and M. V. Gomoyunova, Emission Electronics (Izdatel’stvo “Nauka”, Moscow, 1966) (trans. by: Israel Programme for Scientific Translations, Jerusalem, 1971).

    Google Scholar 

  7. C. A. Spindt, I. Brodie, L. Humphrey and E. R. Westerberg, J. Appl. Phys. 47, 6248 (1976).

    Article  Google Scholar 

  8. In the defintion in Ref. [4], a minus sign has been omitted: u needs to be positive.

  9. R. F. Burgess, H. Kroemer and J. M. Houston, Phys. Rev. 90, 515 (1953).

    Article  Google Scholar 

  10. R. G. Forbes, J. Vac. Sci. Technol. B17, 534 (1999).

    Article  Google Scholar 

  11. A. Modinos, Field, Thermionic, and Secondary Electron Emission Spectroscopy (Plenum, New York, 1984).

    Book  Google Scholar 

  12. R. Stratton, Phys. Rev. 125, 67 (1962).

    Article  CAS  Google Scholar 

  13. L. S. Pan, Mat. Res. Soc. Symp. Proc. 436, 407 (1996).

    Google Scholar 

  14. M. Shah, Physics World 10 (6), 39 (1997).

    Article  Google Scholar 

  15. B. R. Chalamala and B. E. Gnade, IEE Spectrum (April 1998) 42.

    Google Scholar 

  16. V. V. Zhirnov and J. J. Hren, MRS Bulletin (September 1998) 42.

    Google Scholar 

  17. S. R. P. Silva, J. Robertson, W. I. Milne and G. A. J. Amaratunga (eds.), Amorphous Carbon: State of the the Art (World Scientific, Singapore, 1998).

    Google Scholar 

  18. M. W. Geiss, N. N. Efremow, J. D. Woodhouse, M. D. McAleese, M. Marchywka, D. G. Socker and J. F. Hochedez, IEEE Electron Dev. Lett. 12, 456 (1991).

    Article  Google Scholar 

  19. C. Wang, A. Garcia, D. C. Ingram, M. Lake and M. E. Kordesch, Electronics Lett. 27, 1459 (1991).

    Article  CAS  Google Scholar 

  20. J. Robertson, J. Vac. Sci. Technol. B17, 659 (1999).

    Article  Google Scholar 

  21. J. Robertson, Carbon 37, 759 (1999).

    Article  CAS  Google Scholar 

  22. C. Herring and M. H. Nichols, Rev. Mod. Phys. 7, 95 (1935).

    Article  Google Scholar 

  23. L. K. Hansen, J. Appl. Phys. 37, 4498 (1966).

    Article  Google Scholar 

  24. J. B. Cui, J. Ristein and L. Ley, Phys. Rev. B 60, 16135 (1999).

    Article  CAS  Google Scholar 

  25. S. R. P. Silva, private communication.

  26. G. A. J. Amaratunga and S. R. P. Silva, Appl. Phys. Lett. 68, 2529 (1996).

    Article  CAS  Google Scholar 

  27. M. W. Geiss, J. C. Twichell, N. N. Efremow, K. Krohn and T. M. Lyszczarz, Appl. Phys. Lett. 68, 2294 (1996).

    Article  Google Scholar 

  28. O. M. Küttel, O. Gröning, L. Nilsson, L. Diederich and L. Schlapbach, Electron Field Emission from Carbon Films, in Ref. [17].

  29. O. Gröning, O. M. Küttel, P. Gröning and L. Schlapbach, J. Vac. Sci. Tech. B17, 1 (1999).

    Google Scholar 

  30. O. Gröning, O. M. Küttel, P. Gröning and L. Schlapbach, Appl. Phys. Lett. 71, 2253 (1997).

    Article  Google Scholar 

  31. R. D. Young and H. E. Clark, Phys. Rev. Lett. 17, 351 (1966).

    Article  Google Scholar 

  32. T. V. Vorburger, D. Penn and E. W. Plummer, Surface Sci. 48, 417 (1975).

    Article  CAS  Google Scholar 

  33. R. G. Forbes, 1st European Field Emission Workshop, Toledo, November 1999 (unpublished abstracts).

    Google Scholar 

  34. G. A. J. Amaratunga, M. Baxendale, N. Rupesinghe, I. Alexandrou, M. Chhowalla, T. Butler, A. Munindradasa, C. J. Kiley, L. Zhang and T. Sakai., New Diamond and Frontier Carbon Tech. 9, 31 (1999).

    CAS  Google Scholar 

  35. A. Ilie, A. C. Ferrari, T. Yagi and J. Robertson, Diamond 99, Prague, September 1999 (unpublished abstracts).

    Google Scholar 

  36. J. Robertson, these proceedings.

  37. S. Bajic, M. S. Mousa and R. V. Latham, Colloque de Physique 50 (C8), 79 (1989).

    Google Scholar 

  38. R. A. Tuck, W. Taylor, P. G. A. Jones and R. V. Latham, Proc. 4th International Devices Workshop, Nagoya, 1997, p. 723.

    Google Scholar 

  39. M. K. Miller, A. Cerezo, M. G. Heatherington and G. D. W. Smith, Atom Probe Field Ion Microscopy (Clarendon, Oxford, 1996).

    Google Scholar 

  40. S. Bajic and R. V. Latham, J. Phys. D: Appl. Phys. 21, 200 (1988).

    Article  CAS  Google Scholar 

  41. E. Braun, R. G. Forbes, R. V. Latham, J. M. Pelmore and D. E. Sykes, 22nd International.Field Emission Symp., Atlanta, August 1975 (unpublished abstracts, p. 33).

    Google Scholar 

  42. R. G. Forbes, Technical Digest, 9th International Vacuum Microelectronics Conference (ISBN 5-86072-081-5) (Bonch-Rruevich Univ. of Telecommunications, St Petersburg, 1996) p. 58.

    Book  Google Scholar 

  43. M. S. Mousa, Appl. Surf. Sci. 94/95, 129 (1996).

    Article  CAS  Google Scholar 

  44. A. Modinos, Surface Sci. 42, 205 (1974).

    Article  CAS  Google Scholar 

  45. R. D. Forrest, A. P. Burden, S. R. P. Silva, L. K. Cheah and X. Shi, Appl. Phys. Lett. 73, 3784 (1998).

    Article  CAS  Google Scholar 

  46. GöA. hl, GüB. nther, T. Habermann, MüG. ller, M. Schreck, ThüK. H. rer and B. Stritzker, J. Vac. Sci. Technol B 18, 1031 (2000).

    Article  Google Scholar 

  47. I. Brodie and C. A. Spindt, Adv. Electr. Electron Phys. 83, 1 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Forbes, R.G. Theory and Modelling of Field-Induced Electron Emission. MRS Online Proceedings Library 621, 311 (2000). https://doi.org/10.1557/PROC-621-R3.1.1

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/PROC-621-R3.1.1

Navigation