Skip to main content
Log in

A Soft Lithographic Approach to the Fabrication of Single Crystalline Silicon Nanostructures with Well-Defined Dimensions and Shapes

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

A procedure was developed for large-scale fabrication of nanometer-sized structures of single crystalline silicon with well-defined dimensions and shapes. Near-field optical lithography was used to define the nanostructures in a thin film of positive-tone photoresist with an elastomeric phase mask. The nanostructures were then transferred into the underlying silicon-on-insulator (SOI) substrate through a reactive ion etching (RIE) process. With this method, we can routinely generate silicon nanostructures ~130 nm in lateral dimension. They can be supported on the surface of a solid substrate as a patterned array, or released into a freestanding form. The lateral dimension of these silicon structures could be further reduced to as small as ~40 nm using stress-limited oxidation at elevated temperatures. The flexibility of this approach was demonstrated by fabricating nanoscale wires, rods, rings, and interconnected triangles of silicon. Using a two-step exposure method, the silicon nanowires can be precisely “cut” into silicon nanorods with specific lengths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. M. Prokes, K. L. Wang, a special issue in MRS Bull., 24, 13 (1999).

    Article  CAS  Google Scholar 

  2. J. Hu, T. W. Odom, C. M. Lieber, Acc. Chem. Res., 32, 435 (1999).

    Article  CAS  Google Scholar 

  3. a) R. S. Wagner, W. C. Ellis, Appl. Phys. Lett., 4, 89 (1964). b) E. I. Givargizov, J. Vac. Sci. Technol. B, 11, 449 (1993). c) A. M. Morales, C. M. Lieber, Science, 279, 208 (1998). d) H. Z. Zhang, D. P. Yu, Y. Ding, Z. G. Bai, Q. L. Hang, S. Q. Feng, Appl. Phys. Lett., 73, 3396 (1998). e) N. Wang, Y. F. Zhang, Y. H. Tang, C. S. Lee, S. T. Lee, Appl. Phys. Lett., 73, 3902 (1998).

    Article  CAS  Google Scholar 

  4. a) J. W. Lyding, T. C. Shen, J. S. Hubacek, J. R. Tucker, G. C. Abein, Appl. Phys. Lett., 64, 2010 (1994). b)A. C. F. Hoole, M. E. Welland, A. N. Broers, Semicond. Sci.Technol., 12, 116 (1997). c) A. C. Irvine, Z. A. K. Durrani, H. Ahmed, Appl. Phys. Lett., 73, 1113 (1998). d) S. Hu, A. Hamidi, S. Altmeyer, T. Koster, B. Spangenberg, H. Kurz, J. Vac. Sci. Technol. B, 16, 2822 (1998).

    Article  CAS  Google Scholar 

  5. Y. Xia, J. A. Rogers, K. E. Paul, G. M. Whitesides, Chem. Rev., 99, 1823 (1999).

    Article  CAS  Google Scholar 

  6. a) J. A. Rogers, K. E. Paul, R. J. Jackman, G. M. Whitesides, Appl. Phys. Lett., 70, 2658 (1997). b) J. Aizengerg, J. A. Rogers, K. E. Paul, G. M. Whitesides, Appl. Opt., 37, 2145 (1998). c) H. Schmid, H. Biebuyck, B. Michel, O. J. F. Martin, Appl. Phys. Lett., 72, 2379 (1998).

    Article  CAS  Google Scholar 

  7. J. P. Colinge, MRS Bull., 23(12), 16 (1998).

    Article  CAS  Google Scholar 

  8. a) R. Legtenberg, H. Jansen, M. de Boer, M. Elwenspoek, J. Electrochem. Soc., 142, 2020 (1995). b) S. Verhaverbeke, I. Teerlinck, C. Vinckier, G. Stevens, R. Cartuyvels, M. M. Heyns, J. Electrochem. Soc., 141, 2852 (1994).

    Article  CAS  Google Scholar 

  9. a) K. Kurihara, K. Iwadate, H. Namatsu, M. Nagase, K. Murase, J. Vac. Sci. Technol. B, 13, 2170 (1995). b) M. Gotza, M. Dutoit, M. Ilegems, J. Vac. Sci. Technol. B, 16, 582 (1998). c) J. Kedzierski, J. Bokor, C. Kisielowski, J. Vac. Sci. Technol. B, 15, 2825 (1997). d) L. Guo, P. R. Krauss, S. Y. Chou, Appl. Phys. Lett., 71, 1881 (1997).

    Article  CAS  Google Scholar 

  10. a) H. Liu, D. K. Biegelsen, F. A. Ponce, N. M. Johnson, R. F. W. Pease, Appl. Phys. Lett., 64, 1383 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, Y., Gates, B. & Xia, Y. A Soft Lithographic Approach to the Fabrication of Single Crystalline Silicon Nanostructures with Well-Defined Dimensions and Shapes. MRS Online Proceedings Library 636, 421 (2000). https://doi.org/10.1557/PROC-636-D4.2.1

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/PROC-636-D4.2.1

Navigation