Skip to main content
Log in

Interfacial Adhesion of Cu to Self-Assembled Monolayers on SiO2

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

As the critical feature size in microelectronic devices continues to decrease below 100 nm, new barrier materials of > 5 nm thickness are required. Recently we have shown that self-assembled monolayers (SAMs) are attractive candidates that inhibit Cu diffusion into SiO2. For SAMs to be used as barriers in real applications, however, they must also promote adhesion at the Cu/dielectric interfaces. Here, we report preliminary quantitative measurements of interfacial adhesion energy and chemical binding energy of Cu/SiO2 interfaces treated with nitrogen-terminated SAMs. Amine-containing SAMs show a ~10% higher adhesion energy with Cu, while interfaces with Cu-pyridine bonds actually show degraded adhesion, when compared with that of the reference Cu/SiN interface. However, X-ray photoelectron spectroscopy (XPS) measurements show that Cu-pyridine and Cu-amine interactions have a factor-of-four higher binding energy than that of Cu-N bonds at Cu/SiN interfaces. The lack of correlation between adhesion and chemical binding energies is most likely due to incomplete coverage of SAMs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. P. Murarka and M. C. Peckerar, Electronic Materials. San Diego: Harcourt Brace Jovanovich, 1989.

    Google Scholar 

  2. C. V. Nguyen, K. R. Carter, C. J. Hawker, J. L. Hedrick, R. L. Jaffe, R. D. Miller, J. F. Remenar, H. W. Rhee, P. M. Rice, M. F. Toney, M. Trollasas, and D. Y. Yoon, Chem. Mater, 11, 3080 (1999).

    Article  CAS  Google Scholar 

  3. S. M. Sze, VLSI technology, vol. 566. New York: McGraw-Hill Book company, 1983.

  4. M. Lane, Ph. D. Thesis, “Adhesion and debonding in microelctronic devices, ” in Materials Science & Engineering: Stanford, 1999, pp. 150.

    Google Scholar 

  5. J. Seto, N. Asai, I. Fujiwara, T. Ishibashi, T. Kamei, and S. Tamura, Thin Solid Films, 273, 97 (1996).

    Article  CAS  Google Scholar 

  6. A. Ulman, Introduction to Ultrathin Organic Films: From Langmuir-Blodgett to Self-assembly. San Diego: Academic press, 1991.

    Google Scholar 

  7. I. Haller, J. Am. Chem. Soc., 100, 8050 (1978).

    Article  CAS  Google Scholar 

  8. P. Schwartz, F. Schreiber, P. Eisenberger, and G. Scoles, Surf. Sci., 423, 208 (1999).

    Article  CAS  Google Scholar 

  9. W. J. Dressick, C. S. Dulcey, J. H. Georger, G. S. Calabrese, and J. M. Calvert, J. Electrochem. Soc., 141, 210 (1994).

    Article  CAS  Google Scholar 

  10. A. Krishnamoorthy, K. Chanda, S.P. Murarka, G. Ramanath and J.G. Ryan, App. Phys. Lett., 78, 2467 (2001).

    Article  CAS  Google Scholar 

  11. Q. Ma, H. Fujimoto, P. Flinn, V. Jain, F. Adibi-rizi, F. Moghadam, and R. H. Dauskardt, Mat. Res. Soc. Symp., 391, 91 (1995).

    Article  CAS  Google Scholar 

  12. R. H. Dauskardt, M. Lane, Q. Ma, and N. Krishna, Eng. Fract. Mech., 61, 141 (1998).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cui, G., Lane, M., Vijayamohanan, K. et al. Interfacial Adhesion of Cu to Self-Assembled Monolayers on SiO2. MRS Online Proceedings Library 695, 771 (2001). https://doi.org/10.1557/PROC-695-L7.7.1

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/PROC-695-L7.7.1

Navigation