Skip to main content
Log in

Resist Requirements and Limitations for Nanoscale Electron-Beam Patterning

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Electron beam lithography still represents the most effective way to pattern materials at the nanoscale, especially in the case of structures, which are not indefinitely repeating a simple motif. The success of e-beam lithography depends on the availability of suitable resists. There is a substantial variety of resist materials, from PMMA to calixarenes, to choose from to achieve high resolution in electron-beam lithography. However, these materials suffer from the limitation of poor sensitivity and poor contrast.

In both direct-write and projection e-beam systems the maximum beam current for a given resolution is limited by space-charge effects. In order to make the most efficient use of the available current, the resist must be as sensitive as possible. This leads, naturally, to the use of chemically amplified (CA) systems. Unfortunately, in the quest for ever smaller feature sizes and higher throughputs, even chemically amplified materials are limited: ultimately, sensitivity and resolution are not independent. Current resists already operate in the regime of < 1 electron/nm2. In this situation detailed models are the only way to understand material performance and limits.

Resist requirements, including sensitivity, etch selectivity, environmental stability, outgassing, and line-edge roughness as they pertain to, high-voltage (100 kV) direct write and projection electron-beam exposure systems are described. Experimental results obtained on CA resists in the SCALPEL® exposure system are presented and the fundamental sensitivity limits of CA and conventional materials in terms of shot-noise and resolution limits in terms of electron-beam solid interactions are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Abboud, Ki-Ho Baik, V. Chakarian, D. Cole, J. Daniel, R. Dean, M. Gesley, Maiying Lu, R. Naber, T. Newman, F. Raymond, D. Trost, M. Wiltse, W. DeVore, Proc. SPIE 4562, 1 (2002).

    Article  Google Scholar 

  2. J.A. Liddle, L.R. Harriott and W.K. Waskiewicz, Microlithography World, 6, 15 (1997).

    CAS  Google Scholar 

  3. S. D. Golladay, H. C. Pfeiffer, J. D. Rockrohr, and W. Stickel, J. Vac. Sci. Technol., B18, 3072 (2000).

    Article  Google Scholar 

  4. R.L. Brainard, G.G. Barclay, E.H. Anderson, L.E. Ocola, Microelectronic Engineering, 61–62, 707 (2002)

    Article  Google Scholar 

  5. Y. Ohnishi, M. Mizuko, H. Gokan and S. Fujiwara, J. Vac. Sci. Technol., 19, 1141 (1981).

    Article  CAS  Google Scholar 

  6. R. Kunz et al., Proc. SPIE 2724, 365 (1996).

    Article  CAS  Google Scholar 

  7. L.E. Ocola, to appear in J. Vac. Sci. Technol., Proceedings of the 46th EIPBN meeting.

  8. M.J. Bowden, L.F. Thompson and J.P. Ballantyne, J. Vac. Sci. Technol., 12, 1294 (1975).

    Article  CAS  Google Scholar 

  9. L.F. Thompson, J.P. Ballantyne and E.D. Feit, M.J. Bowden, L.F. Thompson and J.P. Ballantyne, J. Vac. Sci. Technol., 12, 1280 (1975).

    Article  CAS  Google Scholar 

  10. R.D. Allen, W.E. Conley and R.R. Kunz, in Microlithography, Micromachining and Microfabrication, edited by P. Rai-Choudhury (SPIE Optical Engineering Press, Bellingahm, 1997), p. 321.

  11. M. M. Mkrtchyan, J. A. Liddle, S. D. Berger, L. R. Harriott, J. M. Gibson and A. M. Schwartz, J. of Appl. Phys., 78, 6888 (1995).

    Article  CAS  Google Scholar 

  12. M. M. Mkrtchyan, J. A. Liddle, S. T. Stanton, E. Munro, W. K. Waskiewicz, Microelectronic Engineering, 53, 299 (2000).

    Article  CAS  Google Scholar 

  13. N. Fares, S. Stanton, J. Liddle and G. Gallatin, J. Vac. Sci. Technol., B18, 3115 (2000).

    Article  Google Scholar 

  14. S.T. Stanton, Proc. SPIE, 4343, 138 (2001).

    Article  Google Scholar 

  15. K. Okamato, K. Suzuki, H. Pfeiffer and M. Sogard, Solid State Technol., May, 118 (2000)

    Google Scholar 

  16. B.H. Koek, T. Chisholm, A.J. van Run, J. Romijn, J.P. Davey, Microelectronic Engineering, 23, 81 (1994).

    Article  Google Scholar 

  17. M. Mkrtchyan, G. Gallatin, A. Liddle, X. Zhu, E. Munro, W. Waskiewicz, D. Muller, Microelectronic Engineering, 57–58, 277 (2001).

    Article  Google Scholar 

  18. H.I. Smith, J. Vac. Sci. Technol., B4, 148 (1986).

    Article  Google Scholar 

  19. G.M. Gallatin and J.A. Liddle, Microelecronic Engineering., 46 365 (1999)

    Article  CAS  Google Scholar 

  20. S. Tagawa, S. Nagahara, Y. Yamamoto, D. Werst and A.D. Trifunac, Proc. SPIE 3999, 204 (2000).

    Article  CAS  Google Scholar 

  21. A. Saeki, T. Kozawa, Y. Yoshida and S. Tagawa, Jpn. J. Appl. Phys. 41, 4213 (2002)

    Article  CAS  Google Scholar 

  22. G.M. Gallatin, Proc. SPIE, 4404, 123 (2001).

    Article  Google Scholar 

  23. F.A. Houle, W.D. Hinsberg, M.I. Sanchez and J.A. Hoffnagle, J. Vac. Sci. Technol., B20, 924 (2002).

    Article  Google Scholar 

  24. W.D. Hinsberg, F.A. Houle, M.I. Sanchez and G.M. Wallraff, IBM J. Res. & Dev. 45, 667 (2001).

    Article  CAS  Google Scholar 

  25. L.E. Ocola, Mat. Res. Soc. Symp. Proc., 705, Y.1.1.1 (2002)

    Google Scholar 

  26. F. A. Houle, W. D. Hinsberg, M. Morrison, M. I. Sanchez, G. Wallraff, C. Larson, and J. Hoffnagle, J. Vac. Sci. Technol., B18, 1874 (2000).

    Article  Google Scholar 

  27. E.H. Anderson, D.L. Olynick, W. Chao, B. Harteneck and E. Veklerov, J. Vac. Sci. Technol., B18, 2970 (2000).

    Article  Google Scholar 

  28. D.C. Joy, Microelectronic Engineering, 1, 103 (1983).

    Article  CAS  Google Scholar 

  29. L.E. Ocola, Microelectronic Engineering, 53, 433 (2000).

    Article  CAS  Google Scholar 

  30. D.C. Joy, http://web.utk.edu/~srcutk/htm/interact.htm

  31. D.R. Allee, C.P. Umbach and A.N. Broers, J. Vac. Sci. Technol., B9, 2838 (1991).

    Article  Google Scholar 

  32. J.M. Macaulay “The production of nanometre structures in inorganic materials by electron beams of high current density”, Ph.D. dissertation, University of Cambridge (1989).

  33. J.M. Macaulay, R.M. Allen, L.M. Brown, S.D. Berger, Microelectronic Engineering, 9, 57 (1989)

    Article  Google Scholar 

  34. A.N. Broers, Proc. R. Soc. Lond. A, 416, 1 (1988).

    Article  CAS  Google Scholar 

  35. A.N. Broers, Phil. Trans. R. Soc. Lond. A, 353, 291 (1995).

    Article  CAS  Google Scholar 

  36. M. Williamson, A. Neureuther, Proc. SPIE, 3999, 1189 (2000).

    Article  CAS  Google Scholar 

  37. M. Sato, L.E. Ocola, A.E. Novembre, K. Ohmori, K. Ishikawa, K. Katsumata and T. Nakayama, J. Vac. Sci. Technol., B17, 2873 (1999).

    Article  Google Scholar 

  38. K.E. Gonsalves, L. Merhari, H. Wu, and Y. Hu, Advanced Materials, 13, 703 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alexander Liddle, J., Gallatin, G.M. & Ocola, L.E. Resist Requirements and Limitations for Nanoscale Electron-Beam Patterning. MRS Online Proceedings Library 739, 15 (2002). https://doi.org/10.1557/PROC-739-H1.5

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/PROC-739-H1.5

Navigation