Skip to main content
Log in

Plasticity-Related Phenomena in Metallic Films on Substrates

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Plastic deformation due to thermal stresses has been investigated for different metallic films deposited on Si or α-alumina substrates. We conducted post-mortem TEM and SEM investigations of samples that underwent thermal cycles in order to capture the microstructural changes imposed by thermal stresses. The ultimate goal is to determine the dominant plasticity mechanisms responsible for such changes. In-situ thermal cycles performed inside the TEM allowed direct and real-time observations of dislocation behaviour under stress. It is shown that dislocation density drops in Al/Si, Au/Si and in Cu/α-alumina thin film systems. Except in the case of pseudo-epitaxial Cu on sapphire, the interaction of dislocations with the interfaces (passivation, oxide, adhesion layer) is attractive and leads to the disappearance of interfacial dislocations. In this light, the generalized observation of high tensile stresses that arise in metallic films at the end of cooling is explained in terms of insufficient dislocation sources instead of classic strain hardening. Diffusional processes can substitute for a lack of dislocation, but the low relaxation strain rate that would be excpected should lead to high stresses during the cooling stages of thermal cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.G. Evans and J.W. Hutchinson, Acta Met. Mat. 43 2507–2530 (1995).

    Article  CAS  Google Scholar 

  2. W.D. Nix, Metall. Trans. A 20A 2217–2245 (1989).

    Article  CAS  Google Scholar 

  3. G.G. Stoney, Proc. Roy. Soc. Lond. A 82 172 (1909).

    Article  CAS  Google Scholar 

  4. P.A. Flinn, D.S. Gardner, and W.D. Nix, IEEE Trans. Electron. Dev. 34, 689 (1987).

    Article  Google Scholar 

  5. L.B. Freund, J. Appl. Mech. 54, 553 (1987).

    Article  CAS  Google Scholar 

  6. L.P. Kubin, “Dislocations and stress relaxation in heteroepitaxial films”, Stress and strain in epitaxy: theoretical concepts, measurements and applications., ed. M. Hanbücken and J.-P. Deville ., (North Holland, 2001).

  7. C.V. Thompson, J. Mater. Res. 8 237–238 (1993).

    Article  Google Scholar 

  8. P. Chaudari, Phil. Mag. A 39 507–516 (1979).

    Article  Google Scholar 

  9. W.D. Nix, Scripta Mater. 39 545–554 (1998).

    Article  CAS  Google Scholar 

  10. G. Dehm, B.J. Inkson, T.J. Balk, T. Wagner, and E. Arzt in Dislocations and deformation mechanisms in thin films and small structures, edited by O. Kraft, K.W. Schwarz, S.P. Baker, L.B. Freund, (Mat. Res. Soc. Symp. Proc. 673, Pittsburgh PA, 2001) p. 619.

    Google Scholar 

  11. B.J. Inkson, G. Dehm, and T. Wagner, Acta Materialia 50 5033–5047 (2002).

    Article  CAS  Google Scholar 

  12. G. Dehm, B.J. Inkson, and T. Wagner, Acta Materialia 50 5021–5032 (2002).

    Article  CAS  Google Scholar 

  13. V. Weihnacht and W. Bruckner, Acta Materialia 49 2365–2372 (2001).

    Article  CAS  Google Scholar 

  14. H.J. Frost and M.F. Ashby, Deformation mechanisms maps. 1982, Oxford: Pergamon Press.

  15. M.D. Thouless, Annu. Rev. Mater. Sci. 25 69–96 (1995).

    Article  CAS  Google Scholar 

  16. Y.-L. Shen and S. Suresh, Acta Met. Mat. 43 3915–3926 (1995).

    Article  CAS  Google Scholar 

  17. O. Bostrom, Wafer shape control - Study of the reactivity in Ti/Al dual layers and its effect on the stress,. 2001, Université d’Aix-Marseille III, Faculté des Siences et Techniques de Saint-Jérôme: Marseille, France. p. 155.

    Google Scholar 

  18. D. Josell, T.P. Weihs, and H. Gao, MRS Bulletin 27 39–44 (2002).

    Article  CAS  Google Scholar 

  19. D. Gerth, D. Katzer, and M. Krohn, Thin solid films 208 67–75 (1992).

    Article  CAS  Google Scholar 

  20. D. Jawarani, H. Kawasaki, I.-S. Yeo, L. Rabenberg, J.P. Starck, and P.S. Ho, J. Appl. Phys. 82 171–181 (1997).

    Article  CAS  Google Scholar 

  21. O. Kraft, L.B. Freund, R. Philips, and E. Arzt, MRS Bulletin 27 30–37 (2002).

    Article  CAS  Google Scholar 

  22. G. Dehm, D. Weiss, and E. Arzt, Mat. Sci. & Eng. A 309–310 468–472 (2001).

    Google Scholar 

  23. M.J. Kobrinsky and C.V. Thompson, Acta Mat. 48 625–633 (2000).

    Article  CAS  Google Scholar 

  24. G. Dehm and E. Arzt, Appl. Phys. Let., 77, 1126 (2003).

    Article  Google Scholar 

  25. G. Dehm, B. Inkson, T. Wagner, T.J. Balk and E. Arzt, J. Mater. Sci. Technol. 18, 2, 113–117 (2003).

    Google Scholar 

  26. M. Legros, G. Dehm, R.M. Keller-Flaig, E. Arzt, K.J. Hemker, and S. Suresh, Mat. Sci. & Eng. (2000).

  27. M. Legros, K.J. Hemker, A. Gouldstone, S. Suresh, R.-M. Keller-Flaig, and E. Arzt, Acta Mat. 50 3435–3452 (2002).

    Article  CAS  Google Scholar 

  28. O.S. Leung, Studies in the strenghtening mechanisms of thin polycristalline gold films, Materials Science. 2001, Stanford University: Stanford.

  29. B. Kaouache, P. Gergaud, O. Thomas, O. Bostrom, and M. Legros, Submitted to Microelectronic Engineering (2003).

  30. T.R. Dalbec, O.S. Leung, and W.D. Nix in Deformation, Processing, and Properties of Structural Materials., edited by E.M. Taleff, C.K. Syn, and R. Lesuer (TMS - Miner. Metals & Mater. Soc, Warrendale, PA, 2000) pp. 95–108.

    Google Scholar 

  31. K.E. Harris and A.H. King, Acta Mat. 46 6195–6203 (1998).

    Article  CAS  Google Scholar 

  32. K. Owusu-Boahen and A.H. King, Acta Mat. 49 237–247 (2001).

    Article  CAS  Google Scholar 

  33. A. Witrouw, J. Proost, P. Roussel, P. Cosemans, and K. Maex, J. Mater. Res. 14 1246–1254 (1999).

    Article  Google Scholar 

  34. G.J. Leusink, J.P. Lokker, M.J.C.van den Homberg, J.F. Jongste, T.G.M. Oosterlaken, G.C.A.M. Janssen, and S. Radelaar, Appl. Surf. Sci. 91 215–219 (1995).

    Article  CAS  Google Scholar 

  35. R. Venkatraman and J.C. Bravman, J. Mater. Res. 7, 2040 (1992).

    Article  CAS  Google Scholar 

  36. S. Bader, E.M. Kalaugher, and E. Arzt, Thin Solid Films 263, 175 (1995).

    Article  CAS  Google Scholar 

  37. J. Koike, S. Utsunomiya, Y. Shimoyama, K. Maruyama, and H. Oikawa, J. Mater Res. 13 3256–3264 (1998).

    Article  CAS  Google Scholar 

  38. M.D. Thouless, J. Gupta, and M.J.E. Harper, J. Mater. Res. 8 1845–1852 (1993).

    Article  CAS  Google Scholar 

  39. Y.-L. Shen, S. Suresh, M.Y. He, A. Bagchi, O. Kienzle, M. Ruhle, and A.G. Evans, J. Mater. Res. 13 1928–1937 (1998).

    Article  CAS  Google Scholar 

  40. S.P. Baker, R.-M. Keller, and E. Arzt in Mat. Res. Soc., edited by 1998.

  41. P. Müllner and E. Arzt in Mat. Res. Soc. Symp. Proc., edited by 1998. Boston, MA.

  42. H. Gao, L. Zhang, W.D. Nix, C.V. Thompson, and E. Arzt, Acta Materialia 47 2865–2878 (1999).

    Article  CAS  Google Scholar 

  43. D. Weiss, H. Gao, and E. Arzt, Acta Materialia 49 2395–2403 (2001).

    Article  CAS  Google Scholar 

  44. M. Hershkovitz, I.A. Blech, and Y. Komem, Th. Sol. Films 130 87–93 (1985).

    Article  CAS  Google Scholar 

  45. D.-K. Kim, B. Heiland, W.D. Nix, E. Arzt, M.D. Deal, and J.D. Plummer, Thin Solid Films 371 278–282 (2000).

    Article  CAS  Google Scholar 

  46. I. Dutta, M.W. Chen, K. Peterson, and T. Shultz, Journal of Electronic Materials 30 1537–1548 (2001).

    Article  CAS  Google Scholar 

  47. G. Dehm, T.J. Balk, H. Edongue, and E. Arzt, submitted to Microelectronic Eng., 2003

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Legros, M., Dehm, G., Balk, T.J. et al. Plasticity-Related Phenomena in Metallic Films on Substrates. MRS Online Proceedings Library 779, 42 (2003). https://doi.org/10.1557/PROC-779-W4.2

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/PROC-779-W4.2

Navigation