Skip to main content
Log in

3D simulation of the dislocation dynamics in polycrystalline metal thin films

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

The plastic deformation of polycrystalline fcc metal thin .lms with thicknesses of 1 μm and less is investigated by simulating the dynamics of discrete dislocations in a representative columnar grain. The simulations are based on the assumption that dislocation sources or multiplication sites are rare and that sources have to operate several times to generate appreciable plastic deformation. This model is thoroughly tested by calculating the response of randomly distributed dislocation sources to an applied stress and comparing the results with experimental data. Stress–strain curves, the influence of boundary conditions, dislocation densities, work hardening rates and their dependence on the film thickness as well as the dependence on grain orientation are studied. The agreement between simulation and experiment is good and many aspects of thin film plasticity can be understood with the assumption that small-scale plastic deformation is source controlled rather than mobility controlled.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Murakami, Thin Solid Films 59, 105 (1979).

    Article  CAS  Google Scholar 

  2. R. Venkatraman and J. C. Bravman, J. Mater. Res. 7, 2040 (1992).

    Article  CAS  Google Scholar 

  3. R. P. Vinci, E. M. Zielinski, and J. C. Bravman, Thin Solid Films 262, 142 (1995).

    Article  CAS  Google Scholar 

  4. R.-M. Keller, S. P. Baker, and E. Arzt, J. Mater. Res. 13, 1307 (1998).

    Article  CAS  Google Scholar 

  5. O. Kraft, M. Hommel, and E. Arzt, Mater. Sci. Eng. A288, 209 (2000).

    Article  CAS  Google Scholar 

  6. B. von Blanckenhagen, P. Gumbsch, and E. Arzt, Mater. Res. Soc. Symp. Proc. 673, P2.3.1 (2001).

    Google Scholar 

  7. B. von Blanckenhagen, P. Gumbsch, and E. Arzt, Phil. Mag. Lett. 83, 1–8 (2003).

    Article  Google Scholar 

  8. V. Weihnacht and W. Brückner, Acta Mater. 49, 2365 (2001).

    Article  CAS  Google Scholar 

  9. M. Hommel and O. Kraft, Acta Mater. 49, 3935 (2001).

    Article  CAS  Google Scholar 

  10. S. P. Baker, A. Kretschmann, and E. Arzt, Acta Mater. 49, 2145 (2001).

    Article  CAS  Google Scholar 

  11. B. von Blanckenhagen, P. Gumbsch, and E. Arzt, Modelling Simul. Mater. Sci. Eng. 9, 157 (2001).

    Article  Google Scholar 

  12. B. von Blanckenhagen, E. Arzt, and P. Gumbsch, to be published (2003).

  13. J. D. Embury and J. P. Hirth, Acta Metall. Mater. 42, 2051 (1994).

    Article  Google Scholar 

  14. W. D. Nix, Scripta Metall. 39, 545 (1998).

    Article  CAS  Google Scholar 

  15. X. H. Liu, F. M. Ross, and K.W. Schwarz, Mater. Res. Soc. Symp. Proc. 673, P4.2.1 (2001).

    Article  Google Scholar 

  16. A. J. E. Foreman, Phil. Mag. A 15, 1011 (1967).

    Article  CAS  Google Scholar 

  17. R. Venkatraman, S. Chen, and J. C. Bravman, J. Vac. Sci. Technol. A 9, 2538 (1991).

    Article  Google Scholar 

  18. K. W. Schwarz, J. Appl. Phys. 85, 108 (1999).

    Article  CAS  Google Scholar 

  19. R. R. Keller, J. M. Phelps, and D. T. Read, Mater. Sci. Eng. A214, 42 (1996).

    Article  CAS  Google Scholar 

  20. R.-M. Keller–Flaig, M. Legros, W. Sigle, A. Gouldstone, K. J. Hemker, S. Suresh, and E. Arzt, J. Mater. Res. 14, 4673 (1999).

    Article  CAS  Google Scholar 

  21. M. J. Kobrinsky and C. V. Thompson, Acta Mater. 48, 625 (2000).

    Article  CAS  Google Scholar 

  22. G. Dehm, D. Weiss, and E. Arzt, Mater. Sci. Eng. A 309–310, 468 (2001).

    Article  Google Scholar 

  23. L. B. Freund, J. Appl. Mech. 54, 553 (1987).

    Article  CAS  Google Scholar 

  24. W. D. Nix, Metall. Trans. A 20A, 2217 (1989).

    Article  CAS  Google Scholar 

  25. K. W. Schwarz and J. Terso ., Appl. Phys. Lett. 69, 1220 (1996).

    Article  CAS  Google Scholar 

  26. D. Gomez-Garcia, B. Devincre, and L. Kubin, J. Comput. Aided Mater. Design 6, 157 (1999).

    Article  Google Scholar 

  27. P. Pant, K. W. Schwarz, and S. P. Baker, Mater. Res. Soc. Symp. Proc. 673, p2.2.1 (2001).

    Article  Google Scholar 

  28. T. S. Kuan and M. Murakami, Metall. Trans. A 13A, 383 (1982).

    Article  CAS  Google Scholar 

  29. P. Müllner and E. Arzt, Mater. Res. Soc. Symp. Proc. 505, 149 (1998).

    Google Scholar 

  30. E. Arzt, G. Dehm, P. Gumbsch, O. Kraft, and D. Weiss, Progr. Mats. Sci. 46, 283 (2001).

    Article  CAS  Google Scholar 

  31. G. Dehm and E. Arzt, Appl. Phys. Lett. 77, 1126 (2000).

    Article  CAS  Google Scholar 

  32. D. Weiss, H. Gao, and E. Arzt, Acta Mater. 49, 2395 (2001).

    Article  CAS  Google Scholar 

  33. M. Hommel, Ph.D. thesis, “Röntgenographische Untersuchung des monotonen und zyklischen Verformungsverhaltens dünner Metallschichten auf Substraten”, Universität Stuttgart, 1999.

  34. D. Weiss, Ph.D. thesis, “Deformation mechanisms in pure and alloyed copper films”, Universität Stuttgart, 2000.

  35. D. Jawarani, H. Kawasaki, I.-S. Yeo, L. Rabenberg, J. P. Start, and P. S. Ho, J. Appl. Phys. 82, 171 (1997).

    Article  CAS  Google Scholar 

  36. G. Dehm, B. J. Inkson, T. J. Balk, T. Wagner, and E. Arzt, Mater. Res. Soc. Symp. Proc. 673, P2.1.1 (2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blanckenhagen, B.V., Arzt, E. & Gumbsch, P. 3D simulation of the dislocation dynamics in polycrystalline metal thin films. MRS Online Proceedings Library 779, 43 (2003). https://doi.org/10.1557/PROC-779-W4.3

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/PROC-779-W4.3

Navigation