Skip to main content
Log in

Radiation-induced Defects in Nonradioactive Natural Minerals: Mineralogical and Environmental Significance

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Natural short-lived radionuclides generate electronic defects in minerals, such as trapped electrons and positive holes, often associated with element impurities, which act as final traps over geological periods. Two main examples will be illustrated. The first example will concern the point defects, which are observed in clay minerals. The high specific surface area makes clay minerals sensitive to the geochemical radiation background and provides a record of the past occurrence of radionuclides in geological systems. In kaolinite, three types of hole-centers are trapped by oxygen atoms linked to Si- or Al-sites. An experimental dosimetry gives the paleodose, which can be used either to assess mean past U-concentration or for kaolinite dating, depending on the available geochemical parameters. The detection of past migrations of radioelements in natural analogues may be used in the safety assessment of radioactive waste disposals. The second example will concern the role of mineral impurities in defect formation and stabilization. Natural fluorites (CaF2) exhibit hole-and electron-centers trapped on several rare earths and oxygen impurities, often present at the ppm level, which are responsible for the wide range of coloration observed in natural fluorites. Ca colloids may form under severe irradiation and give rise to a characteristic absorption. The thermal stability of radiation-induced defects gives constraints on the evolution of fluorites as a function of temperature and time. Other minerals, such as apatite, confirm the importance of impurities in stabilizing radiation- induced defects over geological periods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Ikeya, New applications of electron spin resonance. Dating, Dosimetry and Microscopy. (World Scientific, 1993).

    Google Scholar 

  2. A.S. Marfunin. Spectroscopy, Luminescence and Radiation Centers in Minerals (Speringre Verlag, 1979).

    Book  Google Scholar 

  3. J. P. Muller, B. Clozel, Ph. Ildefonse and G. Calas Appl. Geochem. 1, 205–216 (1992); I.A. Sobolev, A.S. Barinov, L.M. Khomchik, M.I. Ozhovan, E.M. Timofeev Soviet Atomic Energy. 59, 697–698 (1985).

    CAS  Google Scholar 

  4. G. Calas in Spectroscopic Methods in Mineralogy and Geology, edited by F. Hawthorne (Rev. Miner. 18, 1988) pp. 513–571.

    Google Scholar 

  5. G. Morin and D. Bonnin J. Magn. Res. 136, 176 (1999).

    CAS  Google Scholar 

  6. J. P. Muller and G. Calas Econ. Geol. 84, 694 (1989); J.P. Muller, Ph. Ildefonse and G. Calas Clays Clay Miner. 38, 600 (1990)

    CAS  Google Scholar 

  7. B. Clozel, T. Allard and J.P. Muller Clays Clay Miner. 42 657 (1994).

    CAS  Google Scholar 

  8. B. Clozel, J.M. Gaite and J-P. Muller. Phys Chem. Miner. 22, 351 (1995).

    CAS  Google Scholar 

  9. T. Allard, J.P. Muller, J.C. Dran and M.T. Menager Phys. Chem. Miner. 21, 85 (1994).

    CAS  Google Scholar 

  10. T. Allard and J.P. Muller Appl. Geochem. 13, 751 (1998).

    CAS  Google Scholar 

  11. Ph. Ildefonse, J.P. Muller, B. Clozel and G. Calas Eng. Geol. 29, 413 (1990).

    Google Scholar 

  12. E. Balan, T. Allard, B. Boizot, G. Morin and J.P. Muller Clays Clay Miner 47, 605 (1999); E. Balan, T. Allard, B. Boizot, G. Morin and J.P. Muller Clays Clay Miner 48, 439 (2000).

    CAS  Google Scholar 

  13. E. Balan, T. Allard, E. Fritsch, M. Sélo, C. Falguères, F. Chabaux, M.C. Pierret and G. Calas Geochim. Cosmochim. Acta, submitted.

  14. T. Allard, Ph. Ildefonse, L. Perez del Villar, S. Sorieul, M. Pelayo, B. Boizot, E. Balan and G. Calas Eur. J. Miner. 15, 629 (2003).

    CAS  Google Scholar 

  15. S. Sorieul, T. Allard, B. Boizot and G. Calas Phys. Chem. Minerals, submitted.

  16. D. Gournis, A.E. Mantaka-Marketou, M.A. Karakassides and D. Petridis Phys. Chem. Minerals 27, 514 (2000).

    CAS  Google Scholar 

  17. H. Bill and G. Calas Phys. Chem. Minerals 3, 117 (1978).

    CAS  Google Scholar 

  18. G. Calas Bull. Soc. Franc. Minéral. Crist. 95, 470 (1972).

    CAS  Google Scholar 

  19. G. Calas, H. Curien, Y. Farge and R. Maury C.R. Acad. Sci. (Paris) 274, 781 (1972).

    CAS  Google Scholar 

  20. G. Calas and J.C. Touray Modern Geol. 3, 209 (1972).

    CAS  Google Scholar 

  21. G. Morin, T. Allard, E. Balan, Ph. Ildefonse and G. Calas Eur. J. Mineral. 14, 1087 (2002).

    CAS  Google Scholar 

Download references

Acknowledgments

We thank Prof. L Wang for inviting us at the 2003 MRS Fall Meeting and providing a careful review of the manuscript. Most studies reviewed in this paper were supported by the Commissariat à l'Energie Atomique (CEA, France) and the CNRs/iNSU PROSE and PNSE programs. One of us (S.S.) acknowledges a doctoral fellowship from the Agence de Stockage des Déchets Radioactifs (ANDRA, France). This is IPGP contribution #1964.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calas, G., Allard, T., Balan, E. et al. Radiation-induced Defects in Nonradioactive Natural Minerals: Mineralogical and Environmental Significance. MRS Online Proceedings Library 792, 22–33 (2003). https://doi.org/10.1557/PROC-792-R2.6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-792-R2.6

Navigation