Skip to main content
Log in

Proposal to Use GaAs(114) Substrates for Improvement of the Optical Transition Probability in Nitride Semiconductor Quantum Wells

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

The dependence of the spontaneous emission lifetime of excitons in InGaN/GaN quantum disks (QDs) on the crystalline orientation is calculated. For 1-nm-thick QDs, it is found that the lifetime in the conventional c-oriented QDs is ten times as long as that in QDs tilted by 30° and 90°, and that the difference is pronounced by increasing the QDs thickness. This is totally due to the presence of the electric field in strained InGaN. Taking into account our preceding study, in which it was revealed that GaN on GaAs(114) was titled by 30°, we propose the use of GaAs(114) as a substrate for nitride light emitting devices to improve the optical transition probability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Nakamura, S. Pearton, and G. Fasol, Blue Laser Diode, 2nd ed. (Springer, Heidelberg, 2000).

    Book  Google Scholar 

  2. I-H Ho and G. B. Stringfellow, Appl. Phys. Lett. 69, 2701 (1996).

    Article  CAS  Google Scholar 

  3. S. Chichibu, T. Azuhata, T. Sota, and S. Nakamura, Appl. Phys. Lett. 69, 4188 (1996).

    Article  CAS  Google Scholar 

  4. Y. Narukawa, Y. Kawakami, M. Funato, Fujita Sz., Fujita Sg., and S. Nakamura, Appl. Phys. Lett. 70, 981 (1997).

    Article  CAS  Google Scholar 

  5. F. Bernardini and V. Fiorentini, phys. stat. sol. b 216, 391 (1999).

    Article  CAS  Google Scholar 

  6. A. Hangleiter, J. S. Im, H. Kolmer, S. Heppel, J. Off, and F. Scholz, MRS Internet J. Nitride Semicond. Res. 3, 15 (1998).

    Article  Google Scholar 

  7. T. Takeuchi, H. Amano, and I. Akasaki, Jpn. J. Appl. Phys. 39, 413 (2000).

    Article  CAS  Google Scholar 

  8. M. Funato, S. Yamamoto, K. Kaisei, K. Shimogami, Fujita Sz., and Fujita Sg., Appl. Phys. Lett. 79, 4133 (2001).

    Article  CAS  Google Scholar 

  9. F. Bernardini, V. Fiorentini, and D. Vanderbilt, Phys. Rev. B, 56, R10024 (1997).

    Article  CAS  Google Scholar 

  10. M. Yamaguchi, T. Yagi, T. Azuhata, T. Sota, K. Suzuki, S. Chichibu, and S. Nakamura, J. Phys.: Condens. Matter. 9, 241 (1997).

    CAS  Google Scholar 

  11. A. F. Wright, J. Appl. Phys. 82, 2833 (1997).

    Article  CAS  Google Scholar 

  12. A. S. Barker and M. Ilegems, Phys. Rev. B, 7, 743 (1973).

    Article  CAS  Google Scholar 

  13. V. W. L. Chin, T. L. Tansley, and T. Osotchan, J. Appl. Phys. 75, 7365 (1994).

    Article  CAS  Google Scholar 

  14. Y. C. Yeo, T. C. Chong, and M. F. Li, J. Appl. Phys. 83, 1429 (1998).

    Article  CAS  Google Scholar 

  15. Y. Nanishi, Y. Saito, and T. Yamaguchi, Jpn. J. Appl. Phys. 42, 2549 (2003).

    Article  CAS  Google Scholar 

  16. The notations are the same as in Ref. [16].

  17. A. Shikanai, T. Azuhata, T. Sota, S. Chichibu, A. Kuramata, K. Horino, and S. Nakamura, J. Appl. Phys. 81, 417 (1997).

    Article  CAS  Google Scholar 

  18. S.-H. Wei and A. Zunger, Appl. Phys. Lett. 69, 2719 (1996).

    Article  CAS  Google Scholar 

  19. P. Walterelt, O. Brandt, A. Trampert, H. T. Grahn, J. Mennlger, M. Ramstelner, M Relche, and K. H. Ploog, Nature, 406, 865 (2000).

    Article  Google Scholar 

  20. F. D. Sala, A. D. Carlo, P. Lugli, F. Bernardini, V. Fiorentini, R. Sholz, and J.-M. Jancu, Appl. Phys. Lett. 74, 2002 (1999).

    Article  Google Scholar 

  21. M. Sugawara, Phys. Rev. B, 51, 10743 (1995).

    Article  CAS  Google Scholar 

  22. A. Kaneta, K. Okamoto, Y. Kawakami, Fujita Sg., G. Marutsuki, Y. Narukawa, and T. Mukai, Appl. Phys. Lett. 81, 4354 (2002).

    Article  Google Scholar 

  23. K Omae, Y. Kawakami, Fujita Sg., Y. Narukawa, and T. Mukai, Phys. Rev. B, 68, 085303 (2003).

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Prof. Kawakami and Dr. Kaneta for providing their valuable data. This work is partially supported by the 21st Century COE Program (No. 14213201) and Grants for Regional Science and Technology Promotion from the Ministry of Education, Culture, Sports, Science, and Technology.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Funato, M., Kawaguchi, Y. & Fujita, S. Proposal to Use GaAs(114) Substrates for Improvement of the Optical Transition Probability in Nitride Semiconductor Quantum Wells. MRS Online Proceedings Library 798, 86–91 (2003). https://doi.org/10.1557/PROC-798-Y10.12

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-798-Y10.12

Navigation