Skip to main content
Log in

Dielectric, ferroelectric, and piezoelectric properties of Gd-modified CaBi2Nb2O9 high Curie temperature ceramics

  • Invited Paper
  • Focus Issue: Lead-Free Ferroelectric Materials
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

This paper reports the enhanced piezoelectric properties of gadolinium-modified Ca1−xGdxBi2Nb2O9 (CBN-100xGd, where x = 0–0.07) high Curie temperature polycrystalline ferroelectric ceramics. The crystal structure, microstructural morphology, and electrical properties of Gd-modified CBN ceramics are investigated in detail. The results reveal that the Gd-modified CBN ceramics have a pure two-layer Aurivillius-type structure, and exhibit plate-like grains. The resultant Gd-modified CBN ceramics exhibit better piezoelectric and electromechanical properties by comparison with unmodified CBN. The composition of CBN-3Gd exhibits the optimized piezoelectric performance with a high piezoelectric constant d33 value of 13 pC/N and a high Curie temperature Tc of 947 °C. The dc electrical resistivity is significantly enhanced, and that of the CBN-3Gd is 2.45 × 107 Ω cm at 500 °C and 1.53 × 106 Ω cm at 600 °C, which is larger by two orders of magnitude compared with that of unmodified CBN ceramics at the same temperature. Such good electrical properties suggest that the Gd-modified CBN ceramics are promising materials for high-temperature piezoelectric sensor applications.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. R.C. Turner, P.A. Fuierer, R.E. Newnham, T.R. Shrout, Materials for high temperature acoustic and vibration sensors: a review. Appl. Acoust. 41, 299–324 (1994)

    Article  Google Scholar 

  2. D. Damjanovic, Materials for high temperature piezoelectric transducers. Curr. Opin. Solid State Mater. Sci. 3, 469–473 (1998)

    Article  CAS  Google Scholar 

  3. S. Zhang, F. Yu, Piezoelectric materials for high temperature sensors. J. Am. Ceram. Soc. 94, 3153–3170 (2011)

    Article  CAS  Google Scholar 

  4. J. Koruza, H. Liu, M. Höfling, M.-H. Zhang, P. Veber, (K, Na)NbO3-based piezoelectric single crystals: growth methods, properties, and applications. J. Mater. Res. 35, 990–1016 (2020)

    Article  CAS  Google Scholar 

  5. G.L. Messing, S. Trolier-McKinstry, E.M. Sabolsky, C. Duran, S. Kwon, B. Brahmaroutu, P. Park, H. Yilmaz, P.W. Rehrig, K.B. Eitel, E. Suvaci, M. Seabaugh, K.S. Oh, Templated grain growth of textured piezoelectric ceramics. Crit. Rev. Solid State Mater. Sci. 29, 45–96 (2004)

    Article  CAS  Google Scholar 

  6. J. Chen, J. Cheng, J. Guo, Z. Cheng, J. Wang, H. Liu, S. Zhang, Excellent thermal stability and aging behaviors in BiFeO3-BaTiO3 piezoelectric ceramics with rhombohedral phase. J. Am. Ceram. Soc. 103, 374–381 (2020)

    Article  CAS  Google Scholar 

  7. Q. Li, J. Wei, J. Cheng, J. Chen, High temperature dielectric, ferroelectric and piezoelectric properties of Mn-modified BiFeO3-BaTiO3 lead-free ceramics. J. Mater. Sci. 52, 229–237 (2017)

    Article  CAS  Google Scholar 

  8. C.-M. Wang, J.-F. Wang, High performance Aurivillius phase sodium-potassium bismuth titanate lead-free piezoelectric ceramics with lithium and cerium modification. Appl. Phys. Lett. 89, 202905 (2006)

    Article  Google Scholar 

  9. C.-M. Wang, J.-F. Wang, Z.-G. Gai, Enhancement of dielectric and piezoelectric properties of M0.5Bi4.5Ti4O15 (M = Na, K, Li) ceramics by Ce doping. Scr. Mater. 57, 789–792 (2007)

    Article  CAS  Google Scholar 

  10. C.-M. Wang, J.-F. Wang, Aurivillius phase potassium bismuth titanate: K0.5Bi4.5Ti4O15. J. Am. Ceram. Soc. 91, 918–923 (2008)

    Article  CAS  Google Scholar 

  11. J.G. Wu, X.Y. Gao, J.G. Chen, C.M. Wang, S.J. Zhang, S.X. Dong, Review of high temperature piezoelectric materials, devices, and applications. Acta Phys. Sin. 67, 207701 (2018)

    Article  Google Scholar 

  12. L.-L. Zheng, S.-C. Qi, C.-M. Wang, L. Shi, Piezoelectric, dielectric, and ferroelectric properties of high Curie temperature bismuth layer-structured bismuth titanate-tantalate (Bi3TiTaO9). Acta Phys. Sin. 68, 147701 (2019)

    Article  Google Scholar 

  13. R.E. Newnham, R.W. Wolfe, J.F. Dorrian, Structural basis of ferroelectricity in the bismuth titanate family. Mater. Res. Bull. 6, 1029–1039 (1971)

    Article  CAS  Google Scholar 

  14. E.C. Subbarao, A family of ferroelectric bismuth compounds. J. Phys. Chem. Solids 23, 665–676 (1962)

    Article  CAS  Google Scholar 

  15. S. Zhang, N. Kim, T.R. Shrout, M. Kimura, A. Ando, High temperature properties of manganese modified CaBi4Ti4O15 ferroelectric ceramics. Solid State Commun. 140, 154–158 (2006)

    Article  CAS  Google Scholar 

  16. C.-M. Wang, S.J. Zhang, J.-F. Wang, M.-L. Zhao, C.-L. Wang, Electromechanical properties of calcium bismuth niobate (CaBi2Nb2O9) ceramics at elevated temperature. Mater. Chem. Phys. 118, 21–24 (2009)

    Article  CAS  Google Scholar 

  17. H. Chen, B. Shen, J. Xu, L. Kong, J. Zhai, Correlation between grain sizes and electrical properties of CaBi2Nb2O9 piezoelectric ceramics. J. Am. Ceram. Soc. 95, 3514–3518 (2012)

    Article  CAS  Google Scholar 

  18. Y. Zhang, J. Ouyang, J. Zhang, Y. Li, H. Cheng, H. Xu, M. Liu, Z.-P. Cao, C.-M. Wang, Strain engineered CaBi2Nb2O9 thin films with enhanced electrical properties. ACS Appl. Mater. Interfaces. 8, 16744–16751 (2016)

    Article  CAS  Google Scholar 

  19. X. Tian, S. Qu, Z. Pei, C. Tian, Z. Xu, Microstructure, dielectric, and piezoelectric properties of Ce-modified CaBi2Nb2O9 ceramics. Ferroelectrics 404, 127–133 (2010)

    Article  CAS  Google Scholar 

  20. H. Chen, J. Zhai, Enhancing piezoelectric performance of CaBi2Nb2O9 ceramics through microstructure control. J. Electron. Mater. 41, 2238–2242 (2012)

    Article  CAS  Google Scholar 

  21. X. Zhang, H. Yan, M.J. Reece, Effect of a site substitution on the properties of CaBi2Nb2O9 ferroelectric ceramics. J. Am. Ceram. Soc. 91, 2928–2932 (2008)

    Article  CAS  Google Scholar 

  22. J. Yuan, J. Chen, S. Bao, Q. Chen, D. Xiao, J. Zhu, Effect of doping on the structure, piezoelectric and electrical properties of Aurivillius type Ca0.6(Na0.5Bi0.5)0.4Bi2Nb2O9 ceramics. J. Mater. Sci.: Mater. Electron. 29, 21051–21060 (2018)

    CAS  Google Scholar 

  23. X. Xing, F. Cao, Z. Peng, Y. Xiang, Electrical properties and sintering characteristics of zirconium doped CaBi2Nb2O9 ceramics. Ceram. Int. 44, 17326–17332 (2018)

    Article  CAS  Google Scholar 

  24. X. Xing, F. Cao, Z. Peng, Y. Xiang, The effects of oxygen vacancies on the electrical properties of W, Ti doped CaBi2Nb2O9 piezoceramics. Curr. Appl. Phys. 18, 1149–1157 (2018)

    Article  Google Scholar 

  25. Z. Chen, Y. Zhang, P. Huang, X. Li, J. Du, W. Bai, L. Li, F. Wen, P. Zheng, W. Wu, L. Zheng, Y. Zhang, Enhanced piezoelectric properties and thermal stability in Mo/Cr co-doped CaBi2Nb2O9 high-temperature piezoelectric ceramics. J. Phys. Chem. Solids 136, 109195 (2020)

    Article  CAS  Google Scholar 

  26. Z. Chen, X. Li, L. Sheng, J. Du, W. Bai, L. Li, F. Wen, P. Zheng, W. Wu, L. Zheng, Enhanced electrical properties in A-site K/Ce and B-site W/Cr co-substituted CaBi2Nb2O9 high temperature piezoelectric ceramic. J. Mater. Sci.: Mater. Electron. 30, 11727–11734 (2019)

    CAS  Google Scholar 

  27. C. Long, B. Wang, W. Ren, K. Zheng, H. Fan, D. Wang, L. Liu, Significantly enhanced electrical properties in CaBi2Nb2O9-based high-temperature piezoelectric ceramics. Appl. Phys. Lett. 117, 032902 (2020)

    Article  CAS  Google Scholar 

  28. H. Yan, H. Zhang, R. Ubic, M.J. Reece, J. Liu, Z. Shen, Z. Zhang, A lead-free high-curie-point ferroelectric ceramic, CaBi2Nb2O9. Adv. Mater. 17, 1261–1265 (2005)

    Article  CAS  Google Scholar 

  29. H. Chen, X. Guo, Z. Cui, J. Zhai, Effects of A-site Sm substitution and textured structure on electric properties of CaBi2Nb2O9-based high-curie-temperature ceramics. Int. J. Appl. Ceram. Technol. 10, E151–E158 (2013)

    Article  CAS  Google Scholar 

  30. H. Chen, B. Shen, J. Xu, J. Zhai, Textured Ca0.85(Li,Ce)0.15Bi4Ti4O15 ceramics for high temperature piezoelectric applications. Mater. Res. Bull. 47, 2530–2534 (2012)

    Article  CAS  Google Scholar 

  31. C. Qin, Z.-Y. Shen, W.-Q. Luo, F. Song, Z. Wang, Y. Li, Microstructure related properties enhancing in Ce-doped CaBi2Nb2O9 high temperature piezoelectric ceramics. Mater. Res. Express 6, 106308 (2019)

    Article  CAS  Google Scholar 

  32. Z.-Y. Shen, C. Qin, W.-Q. Luo, F. Song, Z. Wang, Y. Li, S. Zhang, Ce and W co-doped CaBi2Nb2O9 with enhanced piezoelectric constant and electrical resistivity at high temperature. J. Materiomics 6, 459–466 (2020)

    Article  Google Scholar 

  33. C.-M. Wang, J.-F. Wang, S.J. Zhang, T.R. Shrout, Piezoelectric and electromechanical properties of ultrahigh temperature CaBi2Nb2O9 ceramics. Phys. Status Solidi 3, 49–51 (2009)

    CAS  Google Scholar 

  34. Q. Wang, C.-M. Wang, J.-F. Wang, S. Zhang, High performance Aurivillius-type bismuth titanate niobate (Bi3TiNbO9) piezoelectric ceramics for high temperature applications. Ceram. Int. 42, 6993–7000 (2016)

    Article  CAS  Google Scholar 

  35. S. Huang, Y.L. Li, C. Feng, M. Gu, X. Liu, Dielectric and structural properties of layer-structured Sr1-xCaxBi2Nb2O9. J. Am. Ceram. Soc. 91, 2933–2937 (2008)

    Article  CAS  Google Scholar 

  36. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. A 32, 751–767 (1976)

    Article  Google Scholar 

  37. H. Chen, F. Fu, J. Zhai, Fabrication and piezoelectric property of highly textured CaBi2Nb2O9 ceramics by tape casting. Jpn. J. Appl. Phys. 50, 050207 (2011)

    Article  Google Scholar 

  38. H. Yan, C. Li, J. Zhou, W. Zhu, L. He, Y. Song, Y. Yu, Effects of A-site (NaCe) substitution with Na-deficiency on structures and properties of CaBi4Ti4O15-based high-Curie-temperature ceramics. Jpn. J. Appl. Phys. 40, 6501–6505 (2001)

    Article  CAS  Google Scholar 

  39. H.S. Shulman, M. Testorf, D. Damjanovic, N. Setter, Microstructure, electrical conductivity, and piezoelectric properties of bismuth titanate. J. Am. Ceram. Soc. 79, 3124–3128 (1996)

    Article  CAS  Google Scholar 

  40. Q. Wang, Z.-P. Cao, C.-M. Wang, Q.-W. Fu, D.-F. Yin, H.-H. Tian, Thermal stabilities of electromechanical properties in cobalt-modified strontium bismuth titanate (SrBi4Ti4O15). J. Alloys Compd. 674, 37–43 (2016)

    Article  CAS  Google Scholar 

  41. X. Xie, Z. Zhou, T. Chen, R. Liang, X. Dong, Enhanced electrical properties of NaBi modified CaBi2Nb2O9-based Aurivillius piezoceramics via structural distortion. Ceram. Int. 45, 5425–5430 (2019)

    Article  CAS  Google Scholar 

  42. Q. Wang, C.-M. Wang, Enhanced piezoelectric properties of Mn-modified Bi5Ti3FeO15 for high-temperature applications. J. Am. Ceram. Soc. 103, 2686–2693 (2020)

    Article  CAS  Google Scholar 

  43. Q. Wei, M. Zhu, M. Zheng, Y. Hou, Sr(Zn1/3Nb2/3)O3-induced R3c to P4bm transition and large field-induced strain in 0.80(Bi0.5Na0.5)TiO3-0.20SrTiO3 ceramics. J. Mater. Res. 34, 1210–1218 (2019)

    Article  CAS  Google Scholar 

  44. C.-M. Wang, J.-F. Wang, S.J. Zhang, T.R. Shrout, Electromechanical properties of A-site (LiCe)-modified sodium bismuth titanate (Na0.5Bi4.5Ti4O15) piezoelectric ceramics at elevated temperature. J. Appl. Phys. 105, 094110 (2009)

    Article  Google Scholar 

  45. C.-M. Wang, L. Zhao, Y. Liu, R.L. Withers, S. Zhang, Q. Wang, The temperature-dependent piezoelectric and electromechanical properties of cobalt-modified sodium bismuth titanate. Ceram. Int. 42, 4268–4273 (2016)

    Article  CAS  Google Scholar 

  46. B. Noheda, D.E. Cox, G. Shirane, J.A. Gonzalo, L.E. Cross, S.E. Park, A monoclinic ferroelectric phase in the Pb(Zr1-xTix)O3 solid solution. Appl. Phys. Lett. 74, 2059–2061 (1999)

    Article  CAS  Google Scholar 

  47. R. Guo, L.E. Cross, S.E. Park, B. Noheda, D.E. Cox, G. Shirane, Origin of the high piezoelectric response in PbZr1-xTixO3. Phys. Rev. Lett. 84, 5423–5426 (2000)

    Article  CAS  Google Scholar 

  48. B. Noheda, D.E. Cox, G. Shirane, R. Guo, B. Jones, L.E. Cross, Stability of the monoclinic phase in the ferroelectric perovskite PbZr1-xTixO3. Phys. Rev. B 63, 014103 (2000)

    Article  Google Scholar 

  49. D.E. Cox, B. Noheda, G. Shirane, Y. Uesu, K. Fujishiro, Y. Yamada, Universal phase diagram for high-piezoelectric perovskite systems. Appl. Phys. Lett. 79, 400–402 (2001)

    Article  CAS  Google Scholar 

  50. Q.M. Zhang, W.Y. Pan, S.J. Jang, L.E. Cross, Domain wall excitations and their contributions to the weak-signal response of doped lead zirconate titanate ceramics. J. Appl. Phys. 64, 6445–6451 (1988)

    Article  CAS  Google Scholar 

  51. Q.M. Zhang, H. Wang, N. Kim, L.E. Cross, Direct evaluation of domain-wall and intrinsic contributions to the dielectric and piezoelectric response and their temperature dependence on lead zirconate-titanate ceramics. J. Appl. Phys. 75, 454–459 (1994)

    Article  CAS  Google Scholar 

  52. D. Damjanovic, Contributions to the piezoelectric effect in ferroelectric single crystals and ceramics. J. Am. Ceram. Soc. 88, 2663–2676 (2005)

    Article  CAS  Google Scholar 

  53. J. Yuan, R. Nie, W. Li, J. Zhu, Impact of crystal structure and defect on the electric properties in (LiCeY)-doped CaBi2Nb2O9-based high-temperature piezoceramics. J. Mater. Sci.: Mater. Electron. 30, 5240–5248 (2019)

    CAS  Google Scholar 

  54. Z. Chen, L. Sheng, X. Li, P. Zheng, W. Bai, L. Li, F. Wen, W. Wu, L. Zheng, J. Cui, Enhanced piezoelectric properties and electrical resistivity in W/Cr co-doped CaBi2Nb2O9 high-temperature piezoelectric ceramics. Ceram. Int. 45, 6004–6011 (2019)

    Article  CAS  Google Scholar 

  55. Z.-Y. Shen, W.-Q. Luo, Y. Tang, S. Zhang, Y. Li, Microstructure and electrical properties of Nb and Mn co-doped CaBi4Ti4O15 high temperature piezoceramics obtained by two-step sintering. Ceram. Int. 42, 7868–7872 (2016)

    Article  CAS  Google Scholar 

  56. H. Chen, X. Guo, Z. Cui, J. Zhai, Donor and acceptor doping effects on the electrical conductivity of CaBi2Nb2O9 ceramics. Phys. Status Solidi A 210, 1121–1127 (2013)

    Article  CAS  Google Scholar 

  57. X. Li, Z. Chen, L. Sheng, L. Li, W. Bai, F. Wen, P. Zheng, W. Wu, L. Zheng, Y. Zhang, Remarkable piezoelectric activity and high electrical resistivity in Cu/Nb co-doped Bi4Ti3O12 high temperature piezoelectric ceramics. J. Eur. Ceram. Soc. 39, 2050–2057 (2019)

    Article  CAS  Google Scholar 

  58. J. Yuan, R. Nie, Q. Chen, J. Xing, J. Zhu, Evolution of structural distortion and electric properties of BTN-based high-temperature piezoelectric ceramics with tungsten substitution. J. Alloys Compd. 785, 475–483 (2019)

    Article  CAS  Google Scholar 

  59. D. Wang, Y. Xu, Y. Shi, H. Wang, X. Wu, C. Wu, J. Zhu, Q. Chen, The structure and electrical properties of Ca0.6(Li0.5Bi0.5-xPrx)0.4Bi2Nb2O9 high-temperature piezoelectric ceramics. J. Am. Ceram. Soc. 103, 266–278 (2019)

    Article  Google Scholar 

  60. Y. Noguchi, I. Miwa, Y. Goshima, M. Miyayama, Defect control for large remanent polarization in bismuth titanate ferroelectrics-doping effect of higher-valent cations. Jpn. J. Appl. Phys. 39, L1259–L1262 (2000)

    Article  CAS  Google Scholar 

  61. G. Liu, D. Wang, C. Wu, J. Wu, Q. Chen, A realization of excellent piezoelectricity and good thermal stability in CaBi2Nb2O9: pseudo phase boundary. J. Am. Ceram. Soc. 102, 1794–1804 (2019)

    Article  CAS  Google Scholar 

  62. X. Zeng, F. Cao, Z. Peng, X. Xing, Crystal structure and electrical properties of (Li, Ce, Nd)-multidoped CaBi2Nb2O9 high temperature ceramics. Ceram. Int. 44, 3069–3076 (2018)

    Article  CAS  Google Scholar 

  63. X. Tian, S. Qu, H. Ma, Z. Pei, B. Wang, Effect of grain size on dielectric and piezoelectric properties of bismuth layer structure CaBi2Nb2O9 ceramics. J. Mater. Sci.: Mater. Electron. 27, 13309–13313 (2016)

    CAS  Google Scholar 

  64. H.X. Yan, H.P. Ning, H.T. Zhang, M.J. Reece, Textured high Curie point piezoelectric ceramics prepared by spark plasma sintering. Adv. Appl. Ceram. 109, 139–142 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 51872166), the Key Research and Development Program of Shandong Province, China (Grant No. 2019GGX102064), and the Key Research and Development Program of Shandong Province, China (Grant No. 2019JZZY010313). CK thanks the financial support from “National Young Scientist” program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Ming Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, JN., Kang, C., Hou, RM. et al. Dielectric, ferroelectric, and piezoelectric properties of Gd-modified CaBi2Nb2O9 high Curie temperature ceramics. Journal of Materials Research 36, 1086–1096 (2021). https://doi.org/10.1557/s43578-020-00023-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-020-00023-2

Keywords

Navigation