Skip to main content
Log in

Development of a high-temperature (295–900 K) Seebeck coefficient Standard Reference Material

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We report the development of a high-temperature Seebeck coefficient Standard Reference Material (SRM) for use in instrument validation and interlaboratory data comparison in the temperature range of 295–900 K to support the research, development, and production of materials and devices related to thermoelectric-based energy conversion applications. We describe the synthesis, anneal–quench procedure, and physical characterization of a p-type boron-doped polycrystalline silicon–germanium alloy with a nominal composition of Si80Ge20. For the certification measurements, we describe the measurement protocols, statistical analysis, the certified Seebeck coefficient values, comprehensive uncertainty budgets, and metrological traceability. Our extensive efforts to identify, reduce, and quantify measurement uncertainties will be emphasized. This new SRM complements SRM 3451 Low-Temperature Seebeck Coefficient Standard (10–390 K) to provide certified reference materials traceable to the International System of Units (SI) for Seebeck coefficient measurements within the temperature range 10–900 K.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the key findings can be made available upon request to the corresponding author.

References

  1. G.S. Nolas, J. Sharp, H.J. Goldsmid, Thermoelectrics: Basic Principles and New Materials Developments (Springer, New York, 2001)

    Book  Google Scholar 

  2. D.M. Rowe (ed.), Thermoelectrics Handbook (CRC Press, Boca Raton, 1995)

    Google Scholar 

  3. J. Martin, T. Tritt, C. Uher, High temperature Seebeck coefficient metrology. J. Appl. Phys. 108, 121101 (2010)

    Article  CAS  Google Scholar 

  4. J. Martin, Protocols for the high temperature measurement of the Seebeck coefficient in thermoelectric materials. Meas. Sci. Technol. 24, 085601 (2013)

    Article  CAS  Google Scholar 

  5. J. Mackey, F. Dynys, A. Sehirlioglu, Uncertainty analysis for common Seebeck and electrical resistivity measurement systems. Rev. Sci. Instrum. 85, 085119 (2014)

    Article  CAS  Google Scholar 

  6. N.D. Lowhorn, W. Wong-Ng, W. Zhang, Z.Q. Lu, M. Otani, E. Thomas, M. Green, T.N. Tran, N. Dilley, S. Ghamaty, N. Elsner, T. Hogan, A.D. Downey, Q. Jie, Q. Li, H. Obara, J. Sharp, C. Caylor, R. Venkatasubramanian, R. Willigan, J. Yang, J. Martin, G. Nolas, B. Edwards, T. Tritt, Round-robin measurements of two candidate materials for a Seebeck coefficient Standard Reference MaterialTM. Appl. Phys. A 94, 231 (2009)

    Article  CAS  Google Scholar 

  7. H. Wang, W.D. Porter, H. Böttner, J. König, L. Chen, S. Bai, T.M. Tritt, A. Mayolet, J. Senawiratne, C. Smith, F. Harris, P. Gilbert, J.W. Sharp, J. Lo, H. Kleinke, L. Kiss, Transport properties of bulk thermoelectrics—an international round-robin study, Part I: Seebeck coefficient and electrical resistivity. J. Electron. Mater. 42, 654–664 (2013)

    Article  CAS  Google Scholar 

  8. Hsin Wang, Shengqiang Bai, Lidong Chen, Alexander Cuenat, Giri Joshi, Holger Kleinke, Jan König, Hee Woong Lee, Joshua Martin, Oh. Min-Wook, Wallace D. Porter, Zhifeng Ren, James Salvador, Jeff Sharp, Patrick Taylor Alan, J. Thompson, Y.C. Tseng, International round-robin study on thermoelectric transport properties of n-type half-heusler from 300 K to 773 K. J. Elec. Mater. 44, 4482 (2015)

    Article  CAS  Google Scholar 

  9. E. Alleno, D. Bérardan, C. Byl, C. Candolfi, R. Daou, R. Decourt, E. Guilmeau, S. Hébert, J. Hejtmánek, B. Lenoir, P. Masschelein, V. Ohorodnichuk, M. Pollet, S. Populoh, D. Ravot, O. Rouleau, M. Soulier, A round robin test of the uncertainty on the measurement of the thermoelectric dimensionless figure of merit of Co0.97Ni0.03Sb3. Rev. Sci. Instrum. 86, 011301 (2015)

    Article  CAS  Google Scholar 

  10. N.D. Lowhorn, W. Wong-Ng, Z.-Q. Lu, J. Martin, M.L. Green, J.E. Bonevich, E.L. Thomas, Development of a Seebeck coefficient Standard Reference Material. J. Mater. Res. 26, 1983 (2011)

    Article  CAS  Google Scholar 

  11. J. Martin, W. Wong-Ng, T. Caillat, I. Yonenaga, M.L. Green, Thermocyclic stability of candidate Seebeck coefficient Standard Reference Materials at high temperature. J. Appl. Phys. 115, 193501 (2014)

    Article  CAS  Google Scholar 

  12. Certain commercial equipment, instruments, software, or materials are identified in this document. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the materials or equipment identified are necessarily the best available for the purpose.

  13. V.S. Shukla, D.M. Rowe, Precipitation of boron from silicon–germanium alloy and its effect in the thermoelectric transport properties. Phys. Stat. Solidi 66, 243 (1981)

    Article  CAS  Google Scholar 

  14. I.M. Lifshitz, V.V. Slyozov, The kinetics of precipitation from supersaturated solid solutions. J. Phys. Chem. Solids 19, 35 (1961)

    Article  Google Scholar 

  15. R.D. Nasby, E.L. Burgess, Precipitation of dopants in silicon–germanium thermoelectric alloys. J. Appl. Phys. 43, 2908 (1972)

    Article  CAS  Google Scholar 

  16. V. Raag, The time and temperature dependence of the thermoelectric properties of silicon-germanium alloy, in Proceedings of the Intersociety Energy Conversion Engineering Conference (IEEE, New York, 1975), p. 723.

  17. D.M. Rowe, N. Savvides, The reversal of precipitation in heavily doped silicon–germanium alloys. J. Phys. D Appl. Phys. 12, 1613 (1979)

    Article  CAS  Google Scholar 

  18. J.P. Dismukes, L. Ekstrom, E.F. Steigmeier, I. Kudman, D.S. Beers, Thermal and electrical properties of heavily doped Ge–Si alloys up to 1300 K. J. Appl. Phys. 35, 2899 (1964)

    Article  CAS  Google Scholar 

  19. S. Boninellia, S. Mirabella, E. Bruno, F. Priolo, F. Cristiano, A. Claverie, D. De Salvador, G. Bisognin, E. Napolitani, Evolution of boron-interstitial clusters in crystalline Si studied by transmission electron microscopy. Appl. Phys. Lett. 91, 031905 (2007)

    Article  CAS  Google Scholar 

  20. B. A. Cook, A comparison of thermoelectric phenomena in diverse alloy systems. Retrospective Theses and Dissertations, Paper 12446, 1999

  21. J. Kucytowski, K. Wokulska, Lattice parameter measurements of boron doped Si single crystals. Cryst. Res. Technol. 40, 424–428 (2005)

    Article  CAS  Google Scholar 

  22. J. Martin, Apparatus for the high temperature measurement of the Seebeck coefficient in thermoelectric materials. Rev. Sci. Instrum. 83, 065101 (2012)

    Article  CAS  Google Scholar 

  23. A.T. Burkov, A. Heinrich, P.P. Konstantinov, T. Nakama, K. Yagasaki, Meas. Sci. Technol. 12, 264 (2001)

    Article  CAS  Google Scholar 

  24. R Core Team, R: a language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, 2020), available at https://www.R-project.org/. Accessed Nov 2020.

  25. C.R. Beauchamp, J.E. Camara, J. Carney, S.J. Choquette, K.D. Cole, P.C. DeRose, D.L. Duewer, M.S. Epstein, M.C. Kline, K.A. Lippa, E. Lucon, K.W. Phinney, M. Polakoski, A. Possolo, K.E. Sharpless, J.R. Sieber, B. Toman, M.R. Winchester, D. Windover, Metrological Tools for the Reference Materials and Instruments of the NIST Material Measurement Laboratory. NIST Special Publication 260 136 2020 (U.S. Government Printing Office: Washington, DC, 2020), available at https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.260-136-2020.pdf. Accessed Nov 2020

  26. H. Scheffé, The Analysis of Variance (Wiley, New York, 1999)

    Google Scholar 

  27. G.A.F. Seber, Linear Regression Analysis (Wiley, New York, 1977)

    Google Scholar 

  28. JCGM 100:2008, Evaluation of Measurement Data—Guide to the Expression of Uncertainty in Measurement (GUM 1995 with Minor Corrections) (Joint Committee for Guides in Metrology, 2008), available at https://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf. Accessed Nov 2020

  29. A. Possolo, Simple Guide for Evaluating and Expressing the Uncertainty of NIST Measurement Results. NIST Technical Note 1900 (U.S. Government Printing Office: Washington, DC, 2015), available at https://doi.org/10.6028/NIST.TN.1900. Accessed Nov 2020

  30. Manual on the Use of Thermocouples in Temperature Measurement Fourth Edition, ASTM Manual Series: MNL 12, Revision of Special Technical Publication (STP) 470B, 1993.

  31. G.W. Burns, M.G. Scroger, G.F. Strouse, M.C. Croarkin, W.F. Guthrie, Temperature-electromotive force reference functions and tables for the letter designated thermocouple types based on the ITS-90. Natl. Inst. Stand. Technol. Monogr. 175, 630 (1993)

    Google Scholar 

  32. SRM 3452, High Temperature Seebeck Coefficient Standard (295 K to 900 K) (National Institute of Standards and Technology, U.S. Department of Commerce, Gaithersburg, 04 February 2021), available at https://www-s.nist.gov/srmors/view_detail.cfm?srm=3452

Download references

Acknowledgments

The authors thank the NIST Office of Reference Materials for coordinating and executing support aspects involved in the issuance of this SRM. The authors also thank Paul DiGregorio (United Lens Company) for coordinating the dicing of the artifact ingot.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua Martin.

Ethics declarations

Conflict of interest

The authors declare that there are no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2694 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martin, J., Lu, ZQ., Wong-Ng, W. et al. Development of a high-temperature (295–900 K) Seebeck coefficient Standard Reference Material. Journal of Materials Research 36, 3339–3352 (2021). https://doi.org/10.1557/s43578-021-00362-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00362-8

Keywords

Navigation