Skip to main content
Log in

BLAST: bridging length/timescales via atomistic simulation toolkit

  • Original Paper
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

The ever-increasing power of supercomputers coupled with highly scalable simulation codes has made molecular dynamics an indispensable tool in applications ranging from predictive modeling of materials to computational design and discovery of new materials for a broad range of applications. Multi-fidelity scale bridging between the various flavors of molecular dynamics, i.e., ab-initio, classical, and coarse-grained models has remained a long-standing challenge. Here, we introduce our framework BLAST (Bridging Length/Timescales via Atomistic Simulation Toolkit) that leverages machine learning principles to address this challenge. BLAST is a multi-fidelity scale bridging framework that provides users with the capabilities to train and develop their own classical atomistic and coarse-grained interatomic potentials (force fields) for molecular simulations. BLAST is designed to address several long-standing problems in the molecular simulation community, such as unintended misuse of existing force fields due to knowledge gap between developers and users, bottlenecks in traditional force field development approaches, and other issues relating to the accuracy, efficiency, and transferability of force fields. Here, we discuss several important aspects in force field development and highlight features in BLAST that enable its functionalities and ease of use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. A. Erdemir et al., Carbon-based tribofilms from lubricating oils. Nature 536, 67–71 (2016)

    Article  CAS  Google Scholar 

  2. Y. Sun et al., Strongly correlated perovskite lithium ion shuttles. Proc. Natl. Acad. Sci. 115, 9672 (2018)

    Article  CAS  Google Scholar 

  3. H.-T. Zhang et al., Perovskite nickelates as bio-electronic interfaces. Nat. Commun. 10, 1651 (2019)

    Article  CAS  Google Scholar 

  4. M. Asadi et al., A lithium–oxygen battery with a long cycle life in an air-like atmosphere. Nature 555, 502–506 (2018)

    Article  CAS  Google Scholar 

  5. F. Zuo et al., Habituation based synaptic plasticity and organismic learning in a quantum perovskite. Nat. Commun. 8, 240 (2017)

    Article  Google Scholar 

  6. T.K. Patra et al., Ligand dynamics control structure, elasticity, and high-pressure behavior of nanoparticle superlattices. Nanoscale 11, 10655–10666 (2019)

    Article  CAS  Google Scholar 

  7. T.K. Patra et al., Defect dynamics in 2-D MoS2 probed by using machine learning, atomistic simulations, and high-resolution microscopy. ACS Nano 12, 8006–8016 (2018)

    Article  CAS  Google Scholar 

  8. M.K. Bera et al., Interfacial localization and voltage-tunable arrays of charged nanoparticles. Nano Letters 14, 6816–6822 (2014)

    Article  CAS  Google Scholar 

  9. M. Yang et al., Self-assembly of nanoparticles into biomimetic capsid-like nanoshells. Nat. Chem. 9, 287 (2016)

    Article  Google Scholar 

  10. Z. Jiang et al., Subnanometer ligand shell asymmetry leads to Janus-like nanoparticle membranes. Nat. Mater. 14, 912–917 (2015)

    Article  CAS  Google Scholar 

  11. M.J. Cherukara et al., Three-dimensional integrated X-ray diffraction imaging of a native strain in multi-layered WSe2. Nano Letters 18, 1993–2000 (2018)

    Article  CAS  Google Scholar 

  12. J. He et al., Diffusion and filtration properties of self-assembled gold nanocrystal membranes. Nano Letters 11, 2430–2435 (2011)

    Article  CAS  Google Scholar 

  13. T.D. Loeffler, T.K. Patra, H. Chan, M.J. Cherukara, S.K.R.S. Sankaranarayanan, Active learning the potential energy landscape for water clusters from sparse training data. J. Phys. Chem. C 124, 4907–4916 (2020)

    Article  CAS  Google Scholar 

  14. B. Narayanan et al., Describing the diverse geometries of gold from nanoclusters to bulk—a first-principles based hybrid bond order potential. J. Phys. Chem. C 120, 13787–13800 (2016)

    Article  CAS  Google Scholar 

  15. K. Sasikumar, H. Chan, B. Narayanan, S.K.R.S. Sankaranarayanan, Machine learning applied to a variable charge atomistic model for Cu/Hf binary alloy oxide heterostructures. Chem. Mater. 31, 3089–3102 (2019)

    Article  CAS  Google Scholar 

  16. B. Narayanan et al., Development of a modified embedded atom force field for zirconium nitride using multi-objective evolutionary optimization. J. Phys. Chem. C 120, 17475–17483 (2016)

    Article  CAS  Google Scholar 

  17. B. Narayanan et al., Machine learnt bond order potential to model metal–organic (Co–C) heterostructures. Nanoscale 9, 18229–18239 (2017)

    Article  CAS  Google Scholar 

  18. M.J. Cherukara et al., Ab initio-based bond order potential to investigate low thermal conductivity of stanene nanostructures. J. Phys. Chem. Lett. 7, 3752–3759 (2016)

    Article  CAS  Google Scholar 

  19. H. Chan et al., Machine learning a bond order potential model to study thermal transport in WSe2 nanostructures. Nanoscale 11, 10381–10392 (2019)

    Article  CAS  Google Scholar 

  20. M.J. Cherukara, B. Narayanan, H. Chan, S.K.R.S. Sankaranarayanan, Silicene growth through island migration and coalescence. Nanoscale 9, 10186–10192 (2017)

    Article  CAS  Google Scholar 

  21. H. Chan et al., Machine learning coarse grained models for water. Nat. Commun. 10, 379 (2019)

    Article  CAS  Google Scholar 

  22. T.D. Loeffler et al., Teaching an old dog new tricks: machine learning an improved TIP3P potential model for liquid-vapor phase phenomena. J. Phys. Chem. C 123, 22643–22655 (2019)

    Article  CAS  Google Scholar 

  23. T.K. Patra et al., A coarse-grained deep neural network model for liquid water. Appl. Phys. Lett. 115, 193101 (2019)

    Article  Google Scholar 

  24. H. Chan et al., Machine learning classical interatomic potentials for molecular dynamics from first-principles training data. J. Phys. Chem. C 123, 6941–6957 (2019)

    Article  CAS  Google Scholar 

  25. H. Chan, M. Cherukara, T.D. Loeffler, B. Narayanan, S.K.R.S. Sankaranarayanan, Machine learning enabled autonomous microstructural characterization in 3D samples. npj Comput. Mater. 6, 1 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

Use of the Center for Nanoscale Materials was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. This work utilized the Carbon cluster at the facility for the framework development.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Henry Chan or Subramanian K. R. S. Sankaranarayanan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chan, H., Narayanan, B., Cherukara, M. et al. BLAST: bridging length/timescales via atomistic simulation toolkit. MRS Advances 6, 21–31 (2021). https://doi.org/10.1557/s43580-020-00002-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43580-020-00002-z

Navigation