Skip to main content
Log in

Evaluating magnesium alloy WE43 for bioresorbable coronary stent applications

  • Original Paper
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Biodegradable stents, especially those composed of magnesium alloy-based materials, can provide a temporary scaffold that support vessels while naturally resorbing in the body after the targeted vessel heals, thereby preventing the restenosis and late thrombosis issues caused by their metallic predecessors. However, due to limitations in the intrinsic mechanical properties of magnesium, further investigation is required to optimize its degradation property, as well as the design, geometry and strut thickness to improve conformability in stent applications. This study aimed to investigate experimentally the degradation property of magnesium alloy WE43 and to optimize the stent geometry through parametric studies using the finite element method. Results of the degradation testing showed that the WE43 with a secondary polycaprolactone dip-coating offered a greater resistance to biodegradation and increased the lifespan of the stent. On average, the resistance to biodegradation increased by 5% in the WE43 magnesium alloy compared with its counterpart lacking any surface coating. The parametric studies have indicated that the stent with honeycomb geometry and a radial thickness of 0.15 mm had demonstrated promising mechanical performance with minimal dog-boning, foreshortening and recoil.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. W. Ding, Opportunities and challenges for the biodegradable magnesium alloys as next-generation biomaterials. Regen. Biomater. 3, 79–86 (2016). https://doi.org/10.1093/rb/rbw003

    Article  CAS  Google Scholar 

  2. R.W. Blair, N.J. Dunne, A.B. Lennon, G.H. Menary, Multi-objective optimisation of material properties and strut geometry for poly(L-lactic acid) coronary stents using response surface methodology. PLoS ONE (2019). https://doi.org/10.1371/journal.pone.0218768

    Article  Google Scholar 

  3. R. Chalisgaonkar, Insight in applications, manufacturing and corrosion behaviour of magnesium and its alloys: a review. Mater. Today 26, 1060–1071 (2020). https://doi.org/10.1016/j.matpr.2020.02.211

    Article  CAS  Google Scholar 

  4. Z. Panahi, E. Tamjid, M. Rezaei, Surface modification of biodegradable AZ91 magnesium alloy by electrospun polymer nanocomposite: evaluation of in vitro degradation and cytocompatibility. Surf. Coat. Technol. 386, 125461 (2020). https://doi.org/10.1016/j.surfcoat.2020.125461

    Article  CAS  Google Scholar 

  5. E.L. Boland, R.N. Shirazi, J.A. Grogan, P.E. McHugh, Mechanical and corrosion testing of magnesium WE43 specimens for pitting corrosion model calibration. Adv. Eng. Mater. 20, 1800656 (2018). https://doi.org/10.1002/adem.201800656

    Article  CAS  Google Scholar 

  6. C. Liu, Z. Ren, Y. Xu, S. Pang, X. Zhao, Y. Zhao, Biodegradable magnesium alloys developed as bone repair materials: a review. Scanning 2018, 9216314 (2018). https://doi.org/10.1155/2018/9216314

    Article  CAS  Google Scholar 

  7. F. Witte, J. Fischer, J. Nellesen, C. Vogt, J. Vogt, T. Donath, F. Beckmann, In vivo corrosion and corrosion protection of magnesium alloy LAE442. Acta Biomater. 6, 1792–1799 (2010). https://doi.org/10.1016/j.actbio.2009.10.012

    Article  CAS  Google Scholar 

  8. J. Iqbal, J. Gunn, P.W. Serruys, Coronary stents: historical development, current status and future directions. Br. Med. Bull. 106, 193–211 (2013). https://doi.org/10.1093/bmb/ldt009

    Article  CAS  Google Scholar 

  9. M.M. Torki, S. Hassanajili, M.M. Jalisi, Design optimizations of PLA stent structure by FEM and investigating its function in a simulated plaque artery. Math. Comput. Simul. 169, 103–116 (2020). https://doi.org/10.1016/j.matcom.2019.09.011

    Article  Google Scholar 

  10. A. Khosravi, A. Akbari, H. Bahreinizad, M. Salimi Bani, A. Karimi, Optimizing through computational modeling to reduce dogboning of functionally graded coronary stent material. J. Mater. Sci. Mater. Med. 28, 1–7 (2017). https://doi.org/10.1007/s10856-017-5959-7

    Article  CAS  Google Scholar 

  11. D. Lim, S.-K. Cho, W.-P. Park, A. Kristensson, J.-Y. Ko, S.T.S. Al-Hassani, H.-S. Kim, Suggestion of potential stent design parameters to reduce restenosis risk driven by foreshortening or dogboning due to non-uniform balloon-stent expansion. Ann. Biomed. Eng. 36, 1118–1129 (2008). https://doi.org/10.1007/s10439-008-9504-1

    Article  Google Scholar 

  12. Z.-Z. Yin, W.-C. Qi, R.-C. Zeng, X.-B. Chen, C.-D. Gu, S.-K. Guan, Y.-F. Zheng, Advances in coatings on biodegradable magnesium alloys. J. Magn. Alloys (2020). https://doi.org/10.1016/j.jma.2019.09.008

    Article  Google Scholar 

  13. W. Wu, L. Petrini, D. Gastaldi, T. Villa, M. Vedani, E. Lesma, B. Previtali, F. Migliavacca, Finite element shape optimization for biodegradable magnesium alloy stents. J. Biomed. Eng. Soc. 38, 2829–2840 (2010). https://doi.org/10.1007/s10439-010-0057-8

    Article  CAS  Google Scholar 

  14. ASTM Nace/ASTMG31-12a, Standard Guide for Laboratory Immersion Corrosion Testing of Metals (West Conshohocken, ASTM International, 2012).

    Google Scholar 

  15. C. Chen, J. Chen, W. Wu, Y. Shi, L. Jin, L. Petrini, L. Shen, G. Yuan, W. Ding, J. Ge et al., In vivo and in vitro evaluation of a biodegradable magnesium vascular stent designed by shape optimization strategy. Biomaterials 221, 119414 (2019). https://doi.org/10.1016/j.biomaterials.2019.119414

    Article  CAS  Google Scholar 

  16. A. Schiavone, T.-Y. Qiu, L.-G. Zhao, Crimping and deployment of metallic and polymeric stents—finite element modelling. Vessel Plus 1, 12–21 (2017). https://doi.org/10.20517/2574-1209.2016.03

    Article  CAS  Google Scholar 

  17. N.A. Zumdick, L. Jauer, L.C. Kersting, T.N. Kutz, J.H. Schleifenbaum, D. Zander, Additive manufactured WE43 magnesium: a comparative study of the microstructure and mechanical properties with those of powder extruded and as-cast WE43. Mater. Charact. 147, 384–397 (2019). https://doi.org/10.1016/j.matchar.2018.11.011

    Article  CAS  Google Scholar 

  18. D. Systèmes, Getting Started with Abaqus, Keywords. (Providence, Dassault Systèmes Simulia Corp, 2018).

    Google Scholar 

  19. S. Borhani, S. Hassanajili, S.H. Ahmadi Tafti, S. Rabbani, Cardiovascular stents: overview, evolution, and next generation. Progress Biomater. 7, 175–205 (2018). https://doi.org/10.1007/s40204-018-0097-y

    Article  CAS  Google Scholar 

  20. S. Verheye, J.A. Ormiston, J. Stewart, M. Webster, E. Sanidas, R. Costa, J.J.R. Costa, D. Chamie, A.S. Abizaid, I. Pinto et al., A next-generation bioresorbable coronary scaffold system: from bench to first clinical evaluation: 6- and 12-month clinical and multimodality imaging results. JACC Cardiovasc. Interv. 7, 89–99 (2014). https://doi.org/10.1016/j.jcin.2013.07.007

    Article  Google Scholar 

  21. S.-H. Kang, I.-H. Chae, J.-J. Park, H.S. Lee, D.-Y. Kang, S.-S. Hwang, T.-J. Youn, H.-S. Stent. Kim, Thrombosis with drug-eluting stents and bioresorbable scaffolds: evidence from a network meta-analysis of 147 trials. JACC Cardiovasc. Interv. 9, 1203–1212 (2016). https://doi.org/10.1016/j.jcin.2016.03.038

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the students who participated in this research. We also acknowledge the contributions of Prof. Cuie Wen for her generosity in providing Mg WE43 materials for testing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kate Fox.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pang, T.Y., Kwok, J.S., Nguyen, C.T. et al. Evaluating magnesium alloy WE43 for bioresorbable coronary stent applications. MRS Advances 6, 54–60 (2021). https://doi.org/10.1557/s43580-021-00012-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43580-021-00012-5

Keywords

Navigation