Skip to main content
Log in

Assessment of positrons for defect studies in CeO2 materials

  • Original Paper
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Disposal of spent nuclear fuel poses significant challenges, as the UO2 and fission products are under constant irradiation and must be safely stored for millennia. CeO2 is a non-radioactive analog for UO2 for studying microstructure and its evolution. Many techniques have been applied to uranium and cerium oxides to investigate point defects. Positron annihilation spectroscopies (PAS) are sensitive to neutral and negatively charged vacancy-like point defects and impurity vacancy complexes. PAS has been applied previously to UO2+x to investigate nuclear fuels, but virtually no PAS work exists on CeO2. Here, the basics of positron annihilation spectroscopy is reviewed, and preliminary work on undoped and doped CeO2 is shown and compared to the literature results from UO2. To simulate fission product incorporation in spent nuclear fuels, CeO2 samples were doped at different concentration with yttrium. Select samples were irradiated with heavy ions at different doses. Doping and irradiation are shown to give rise to different defect characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. B. Jordi, R.C. Ewing, Elements 2, 343–349 (2006)

    Article  Google Scholar 

  2. R.C. Ewing, R.A. Whittleston, B.W.D. Yardley, Elements 12, 233–237 (2016)

    Article  CAS  Google Scholar 

  3. R.C. Ewing, Nat. Mater. 14, 252–257 (2015)

    Article  CAS  Google Scholar 

  4. T. Wiss et al., J. Nucl. Mater. 451, 198–206 (2014)

    Article  CAS  Google Scholar 

  5. J. Janeczek, R.C. Ewing, V.M. Oversby, L.O. Werme, J. Nucl. Mater. 238, 121–130 (1996)

    Article  CAS  Google Scholar 

  6. W.F. Cureton et al., J. Nucl. Mater. 525, 83–91 (2019)

    Article  CAS  Google Scholar 

  7. H. Matzke, P.G. Lucuta, T. Wiss, Nucl. Instrum. Meth. Phys. Res. B 166–167, 920–926 (2000)

    Article  Google Scholar 

  8. W.J. Weber, Rad. Effects Defects Solids 83, 145–156 (1984)

    Article  CAS  Google Scholar 

  9. S. Fernandez, M.I. Nieto, J. Cobos, R. Moreno, J. Eur. Ceram. Soc. 36, 3505–3512 (2016)

    Article  CAS  Google Scholar 

  10. C.L. Corkhill et al., ACS Appl. Mater. Interfaces 8, 10562–10571 (2016)

    Article  CAS  Google Scholar 

  11. Mohun R et al., to be published (2021).

  12. V. Slugen et al., Metals 10, 1378 (2020)

    Article  CAS  Google Scholar 

  13. J. Cizek, Mater. Sci. Technol. 34, 577–598 (2018)

    Article  Google Scholar 

  14. F. Tuomisto, I. Makkonen, Rev. Mod. Phys. 85, 1583–1631 (2013)

    Article  CAS  Google Scholar 

  15. P.J. Schultz, K.G. Lynn, Rev. Mod. Phys. 60, 701–779 (1988)

    Article  CAS  Google Scholar 

  16. R. Mohun et al., Acta Mater. 164, 512–519 (2019)

    Article  CAS  Google Scholar 

  17. M.F. Barthe et al., EPJ Web Conf. 115, 03004 (2016)

    Article  Google Scholar 

  18. M.F. Barthe et al., Phys. Stat. Sol. C 4, 3627–3632 (2007)

    CAS  Google Scholar 

  19. J. Wiktor, Phys. Rev. B 90, 184101 (2014)

    Article  Google Scholar 

  20. J.T. Reiser et al., J. Nucl. Mater. 490, 75–84 (2017)

    Article  CAS  Google Scholar 

  21. M.H. Weber et al., Appl. Phys. Lett. 79, 3884–3886 (2001)

    Article  Google Scholar 

  22. I. Makkonen et al., J. Phys. Cond. Matter 28, 224002 (2016)

    Article  Google Scholar 

  23. A.P. Mills, R.J. Wilson, Phys. Rev. A 26, 490–500 (1982)

    Article  CAS  Google Scholar 

  24. A. van Veen et al., Appl. Surf. Sci. 85, 216–224 (1995)

    Article  Google Scholar 

  25. J.F. Ziegler, M.D. Ziegler, J.P. Biersack, Nucl. Instrum. Meth. Phys. Res. B 268, 1818–1823 (2010)

    Article  CAS  Google Scholar 

  26. C.W. He et al., J. Phys. Conf. Series 505, 012018 (2014)

    Article  CAS  Google Scholar 

  27. H. Labrim et al., Appl. Surf. Sci. 252, 3262–3268 (2006)

    Article  CAS  Google Scholar 

  28. M. Zibrov et al., J. Nucl. Mater. 531, 152017 (2020)

    Article  CAS  Google Scholar 

  29. M. Hasegawa et al., Appl. Surf. Sci. 194, 76–83 (2002)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

MW, JM, and SK thank the Institute for Materials Research and U.S. Department of Energy Nuclear Energy University Program, Used Nuclear Fuel Disposition program, Award # DE-NE0008689. JM thanks the US-UK Fulbright Commission, and JM and SK thank the S.Y. Chung Centenary Fellowship for support during the research period. RM and CC thank Engineering and Physical Sciences Research Council, under the UK-US Nuclear Energy University Program (Grant No. EP/R006075/1), an Early Career Research Fellowship awarded to CC (Grant No. EP/N017870/1), and the MIDAS Facility, at the University of Sheffield, established with support from the UK Department of Energy and Climate Change.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc H. Weber.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

John McCloy was an editor of this journal during the review and decision stage. For the MRS Advances policy on review and publication of manuscripts authored by editors, please refer to mrs.org/editor-manuscripts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weber, M.H., Karcher, S., Mohun, R. et al. Assessment of positrons for defect studies in CeO2 materials. MRS Advances 6, 119–124 (2021). https://doi.org/10.1557/s43580-021-00037-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43580-021-00037-w

Navigation