Skip to main content
Log in

Semiconductor nanopillars for programmable directional lasing emissions

  • Original Paper
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Mie resonances facilitate an efficient manipulation of light on the subwavelength scale in high-refractive-index metasurfaces. These ultra-thin high-refractive-index nanostructures have been utilized in wave-front engineering devices for amplitude and phase modulation on the subwavelength scale in dielectric metasurfaces with high transmission efficiencies. We seek to establish a guideline for the desired phase modulation of each element in the metasurfaces integrated with light-emitting devices. Numerical simulations of gallium arsenide (GaAs) nanopillar metasurfaces are carried out over the visible and near-infrared spectral ranges. We analyze the scattering properties of the nanopillars of various sizes along with reflection, transmission, absorption, and phase-change spectra of the nanopillar arrays. We study phase-change properties of nanopillars of varied radii along the spectrum and elaborate on the scattering features of the metasurfaces to create a library of phase-change characteristics. The results indicate that the nanostructures respond with strong resonances and the corresponding phase-change features in the visible and near-infrared frequencies. By the variation of the nanopillar dimensions, one can control the light phase change and shift the features along the spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A.B. Evlyukhin, C. Reinhardt, A. Seidel, B.S. Luk’yanchuk, B.N. Chichkov, Phys. Rev. B 82(4), 045404 (2010)

    Article  Google Scholar 

  2. A.E. Krasnok, A.E. Miroshnichenko, P.A. Belov, Y.S. Kivshar, Opt. Express 20(18), 20599–20604 (2012)

    Article  Google Scholar 

  3. V. Karimi, V.E. Babicheva, Proc. SPIE Metamater. Metadev. Metasyst. 11460, 114601F (2020)

    Google Scholar 

  4. A.I. Kuznetsov, A.E. Miroshnichenko, M.L. Brongersma, Y.S. Kivshar, B. Luk’yanchuk, Science 354, 6314 (2016)

    Article  Google Scholar 

  5. V.E. Babicheva, MRS Adv. 4(11–12), 713–722 (2019)

    Article  CAS  Google Scholar 

  6. A.B. Evlyukhin, S.M. Novikov, U. Zywietz, R.L. Eriksen, C. Reinhardt, S.I. Bozhevolnyi, B.N. Chichkov, Nano Lett. 12(7), 3749–3755 (2012)

    Article  CAS  Google Scholar 

  7. V.E. Babicheva, J.V. Moloney, Laser Photon. Rev. 13(2), 1800267 (2019)

    Article  Google Scholar 

  8. V.E. Babicheva, A.B. Evlyukhin, MRS Commun. 8(3), 712–717 (2018)

    Article  CAS  Google Scholar 

  9. Z.Y. Wang, R.J. Zhang, S.Y. Wang, M. Lu, X. Chen, Y.X. Zheng, L.Y. Chen, Z. Ye, C.Z. Wang, K.M. Ho, Sci. Rep. 5(1), 1–6 (2015)

    Google Scholar 

  10. F.J. Bezares, J.P. Long, O.J. Glembocki, J. Guo, R.W. Rendell, R. Kasica, L. Shirey, J.C. Owrutsky, J.D. Caldwell, Opt. Express. 21(23), 27587–27601 (2013)

    Article  Google Scholar 

  11. U. Zywietz, A.B. Evlyukhin, C. Reinhardt, B.N. Chichkov, Nat. Commun. 5(1), 1–7 (2014)

    Article  Google Scholar 

  12. M.R. Shcherbakov, S. Liu, V.V. Zubyuk, A. Vaskin, P.P. Vabishchevich, G. Keeler, T. Pertsch, T.V. Dolgova, I. Staude, I. Brener, A.A. Fedyanin, Nat. Commun. 8(1), 1–6 (2017)

    Article  CAS  Google Scholar 

  13. W.T. Chen, A.Y. Zhu, F. Capasso, Nat. Rev. Mater. 5(8), 604–620 (2020)

    Article  Google Scholar 

  14. F. Koyama, S. Kinoshita, K. Iga, IEICE Trans. (1976-1990) 71(11), 1089–1090 (1988)

    Google Scholar 

  15. K. Iga, IEEE J. Sel. Top. Quantum Electron. 6(6), 1201–1215 (2000)

    Article  CAS  Google Scholar 

  16. A. Larsson, IEEE J. Sel. Top. Quantum Electron. 17(6), 1552–1567 (2011)

    Article  CAS  Google Scholar 

  17. Y.-Y. Xie et al., Nat. Nanotechnol. 15, 125–130 (2020)

    Article  CAS  Google Scholar 

  18. A.S. Backer, Opt. Express 27(21), 30308–30331 (2019)

    Article  Google Scholar 

  19. W.T. Chen, A.Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, F. Capasso, Nat. Nanotechnol. 13(3), 220–226 (2018)

    Article  CAS  Google Scholar 

  20. M. Kerker, D.S. Wang, C.L. Giles, J. Opt. Soc. Am. 73(6), 765–767 (1983)

    Article  Google Scholar 

  21. V.E. Babicheva, A.B. Evlyukhin, Laser Photon. Rev. 11(6), 1700132 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge support from the UNM Research Allocations Committee, Award RAC2022. The authors declare no conflict of interest. The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vahid Karimi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karimi, V., Babicheva, V.E. Semiconductor nanopillars for programmable directional lasing emissions. MRS Advances 6, 234–240 (2021). https://doi.org/10.1557/s43580-021-00042-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43580-021-00042-z

Navigation