Skip to main content
Log in

Investigation of MOCVD grown crack-free 4 μm thick aluminum nitride using nitrogen as a carrier gas

  • Original Paper
  • Published:
MRS Advances Aims and scope Submit manuscript

A Correction to this article was published on 12 August 2021

This article has been updated

Abstract

We report the growth of crack-free 4 μm thick Aluminum Nitride (AlN) layers in a custom build vertical cold wall metal–organic chemical vapor deposition (MOCVD) reactor using N2 carrier gas on 0.2° offcut sapphire substrate without any additional substrate preprocessing steps. The growth process includes a low-temperature pulsed rough buffer layer followed by a high-temperature layer with continuous growth without any interlayer. The structural properties of the AlN were analyzed using atomic force microscopy (AFM), X-ray diffraction (XRD), and Raman spectroscopy. The AFM image of the 4 µm AlN layer shows an atomically smooth 2-dimensional surface with terrace-like steps. The dislocation density of 1 × 109 cm−2 was calculated using Williamson and Hall process for a 4 µm AlN sample. Additionally, strain calculation from XRD and stress calculation from Raman spectroscopy of AlN grown with N2 carrier gas are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Change history

References

  1. H. Long, J. Dai, Y. Zhang et al., High quality 10.6 μm AlN grown on pyramidal patterned sapphire substrate by MOCVD. Appl Phys Lett 114, 1–6 (2019). https://doi.org/10.1063/1.5074177

    Article  CAS  Google Scholar 

  2. Y. Taniyasu, M. Kasu, T. Makimoto, An aluminium nitride light-emitting diode with a wavelength of 210 nanometres. Nature 441, 325–328 (2006). https://doi.org/10.1038/nature04760

    Article  CAS  Google Scholar 

  3. X. Sun, D. Li, Y. Chen et al., In situ observation of two-step growth of AlN on sapphire using high-temperature metal-organic chemical vapour deposition. CrystEngComm 15, 6066–6073 (2013). https://doi.org/10.1039/c3ce40755a

    Article  CAS  Google Scholar 

  4. S.W. Kaun, P.G. Burke, M. Hoi Wong et al., Effect of dislocations on electron mobility in AlGaN/GaN and AlGaN/AlN/GaN heterostructures. Appl. Phys. Lett. (2012). https://doi.org/10.1063/1.4773510

    Article  Google Scholar 

  5. D. Jena, A.C. Gossard, U.K. Mishra, Dislocation scattering in a two-dimensional electron gas. Appl. Phys. Lett. 76, 1707–1709 (2000). https://doi.org/10.1063/1.126143

    Article  CAS  Google Scholar 

  6. F.A. Marino, N. Faralli, T. Palacios et al., Effects of threading dislocations on AlGaN/GaN high-electron mobility transistors. IEEE Trans. Electron Devices 57, 353–360 (2010). https://doi.org/10.1109/TED.2009.2035024

    Article  CAS  Google Scholar 

  7. J. Mei, F.A. Ponce, R.S.Q. Fareed et al., Dislocation generation at the coalescence of aluminum nitride lateral epitaxy on shallow-grooved sapphire substrates. Appl. Phys. Lett. (2007). https://doi.org/10.1063/1.2745207

    Article  Google Scholar 

  8. Z. Chen, R.S. Qhalid Fareed, M. Gaevski et al., Pulsed lateral epitaxial overgrowth of aluminum nitride on sapphire substrates. Appl. Phys. Lett. (2006). https://doi.org/10.1063/1.2245436

    Article  Google Scholar 

  9. Z. Chen, S. Newman, D. Brown et al., High quality AlN grown on SiC by metal organic chemical vapor deposition. Appl. Phys. Lett. (2008). https://doi.org/10.1063/1.2988323

    Article  Google Scholar 

  10. H. Miyake, G. Nishio, S. Suzuki et al., Annealing of an AlN buffer layer in N2-CO for growth of a high-quality AlN film on sapphire. Appl. Phys. Express (2016). https://doi.org/10.7567/APEX.9.025501

    Article  Google Scholar 

  11. A. Kakanakova-Georgieva, G.K. Gueorguiev, S. Stafström et al., AlGaInN metal-organic-chemical-vapor-deposition gas-phase chemistry in hydrogen and nitrogen diluents: first-principles calculations. Chem. Phys. Lett. 431, 346–351 (2006). https://doi.org/10.1016/j.cplett.2006.09.102

    Article  CAS  Google Scholar 

  12. A. Kakanakova-Georgieva, A. Kasic, C. Hallin et al., Performance of III-nitride epitaxy in a low V-to-III gas-flow ratio range under nitrogen ambient in a hot-wall MOCVD system. Phys. Status Solidi C Conf. 2, 960–963 (2005). https://doi.org/10.1002/pssc.200460602

    Article  CAS  Google Scholar 

  13. R. Miyagawa, S. Yang, H. Miyake, K. Hiramatsu, Effects of carrier gas ratio and growth temperature on MOVPE growth of AlN. Phys. Status Solidi Curr. Top. Solid State Phys. 9, 499–502 (2012). https://doi.org/10.1002/pssc.201100712

    Article  CAS  Google Scholar 

  14. X. Su, T. Ye, S. Wang et al., Surface morphology of GaN nucleation layer grown by MOCVD with different carrier gas. AIP Adv 8, 1–7 (2018). https://doi.org/10.1063/1.5033939

    Article  CAS  Google Scholar 

  15. S.C. Jain, M. Willander, J. Narayan, R. Van, Overstraeten, III–nitrides: growth, characterization, and properties. J. Appl. Phys 87, 966–1001 (2000). https://doi.org/10.1063/1.371971

    Article  Google Scholar 

  16. T. Metzger, R. Höpler, E. Born, O. Ambacher, M. Stutzmann, R. Stömmer, M. Schuster, H. Göbel, S. Christiansen, Defect structure of epitaxial GaN films determined by transmission electron microscopy and triple-axis X-ray diffractometry. Philos. Mag. A Phys. Condens Matter Struct. Defects Mech. Prop. 77, 1013–1025 (1998). https://doi.org/10.1080/01418619808221225

    Article  CAS  Google Scholar 

  17. H.M. Wang, J.P. Zhang, C.Q. Chen et al., AlN/AlGaN superlattices as dislocation filter for low-threading-dislocation thick AlGaN layers on sapphire. Appl. Phys. Lett. 81, 604–606 (2002). https://doi.org/10.1063/1.1494858

    Article  CAS  Google Scholar 

  18. Y. Feng, V. Saravade, T.F. Chung et al., Strain-stress study of AlxGa1−xN/AlN heterostructures on c-plane sapphire and related optical properties. Sci. Rep. 9, 1–8 (2019). https://doi.org/10.1038/s41598-019-46628-4

    Article  CAS  Google Scholar 

  19. S. Yang, R. Miyagawa, H. Miyake et al., Raman scattering spectroscopy of residual stresses in epitaxial AlN films. Appl Phys Express 4, 10–13 (2011). https://doi.org/10.1143/APEX.4.031001

    Article  CAS  Google Scholar 

  20. T. Prokofyeva, M. Seon, J. Vanbuskirk et al., Vibrational properties of AlN grown on (111)-oriented silicon. Phys. Rev. B Condens. Matter Mater. Phys. 63, 1–7 (2001). https://doi.org/10.1103/PhysRevB.63.125313

    Article  CAS  Google Scholar 

  21. M. Kuball, J.M. Hayes, A.D. Prins et al., Raman scattering studies on single-crystalline bulk AIN under high pressures. Appl. Phys. Lett. 78, 724–726 (2001). https://doi.org/10.1063/1.1344567

    Article  CAS  Google Scholar 

  22. H. Harima, Properties of GaN and related compounds studied by means of Raman scattering. J. Phys. Condens. Matter 14(38), R967 (2002). https://doi.org/10.1088/0953-8984/14/38/201

    Article  CAS  Google Scholar 

  23. X. Rong, X. Wang, G. Chen et al., Residual stress in AlN films grown on sapphire substrates by molecular beam epitaxy. Superlattices Microstruct. 93, 27–31 (2016). https://doi.org/10.1016/j.spmi.2016.02.050

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the University of South Carolina through the ASPIRE 1 program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Samiul Hasan or Iftikhar Ahmad.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasan, S., Mamun, A., Hussain, K. et al. Investigation of MOCVD grown crack-free 4 μm thick aluminum nitride using nitrogen as a carrier gas. MRS Advances 6, 456–460 (2021). https://doi.org/10.1557/s43580-021-00071-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43580-021-00071-8

Navigation