Skip to main content
Log in

Electrolyte conditions in lithium-ion batteries in presence of a thermal gradient

  • Original Paper
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Heat release within a Li-ion battery is a significant safety concern. If the temperature rises above a certain threshold, secondary chemical reactions begin with potential thermal runaway outcomes. This work investigates spatially dependent electrolyte conditions in the presence of a thermal gradient to produce an electrolyte-centric thermal runaway model in the absence of passage of electrical current. Li ions, momentum, and thermal flux are the main components of the analysis, which accounts for free convection within the electrolyte. Numerical simulation techniques are used for this purpose. The model shows that hot spots can be found at the interface between the anode and the liquid electrolyte. The temperature trends are in line with previous thermal models for an entire Li-ion cylindrical battery. A thorough comprehension of the transport processes inside the battery contributes to mitigate damage induced due to thermal abuse conditions.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The datasets generated during the current study are available from the corresponding author on reasonable request.

References

  1. M.N. Richard, J.R. Dahn, J. Electrochem. Soc. (1999). https://doi.org/10.1149/1.1391893

    Article  Google Scholar 

  2. R. Spotnitz, J. Franklin, J. Power Sources (2003). https://doi.org/10.1016/S0378-7753(02)00488-3

    Article  Google Scholar 

  3. X. Feng, M. Ouyang, X. Liu, L. Lu, Y. Xia, X. He, Energy Stor. Mater. (2018). https://doi.org/10.1016/j.ensm.2017.05.013

    Article  Google Scholar 

  4. T.D. Hatchard, D.D. McNeil, A. Basu, J.R. Dahn, J. Electrochem. Soc. (2001). https://doi.org/10.1149/1.1377592

    Article  Google Scholar 

  5. C.F. Lopez, J.A. Jeevarajan, P.P. Mukherjee, J. Electrochem. Soc. (2015). https://doi.org/10.1149/2.0751510jes

    Article  Google Scholar 

  6. G. Botte, R.E. White, Z. Zhang, J. Power Sources (2001). https://doi.org/10.1016/S0378-7753(01)00746-7

    Article  Google Scholar 

  7. G. Kim, A. Pesaran, R. Spotnitz, J. Power Sources (2007). https://doi.org/10.1016/j.jpowsour.2007.04.018

    Article  Google Scholar 

  8. A. Mistry, C. Fear, R. Carter, C.T. Love, P.P. Mukherjee, ACS Energy Lett. (2018). https://doi.org/10.1021/acsenergylett.8b02003

    Article  Google Scholar 

  9. H. Gu, T.V. Nguyen, R.E. White, J. Electrochem. Soc. (1987). https://doi.org/10.1149/1.2100322

    Article  Google Scholar 

  10. F. Alavyoon, A. Eklund, F.H. Bark, R.I. Karlsson, D. Simonsson, Electrochim. Acta (1991). https://doi.org/10.1016/0013-4686(91)85224-U

    Article  Google Scholar 

  11. A. Eklund, R.I. Karlsson, Electrochim. acta (1992). https://doi.org/10.1016/0013-4686(92)80071-S

    Article  Google Scholar 

  12. D.M. Bernardi, H. Gu, A.Y. Schoene, J. Electrochem. Soc. (1993). https://doi.org/10.1149/1.2220804

    Article  Google Scholar 

  13. W.B. Gu, C. Wang, B.Y. Liaw, J. Electrochem. Soc. (1997). https://doi.org/10.1149/1.1837741

    Article  Google Scholar 

  14. R.B. Bird, E.N. Lightfoot, W.E. Stewart, Transport Phenomena, 2nd edn. (Wiley, New York, 2002).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the U.S. Office of Naval Research, through Grant: N00014-18-1-2732.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. I. Guillamon.

Ethics declarations

Conflict of interest

On behalf of all the authors, the corresponding author states there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guillamon, J.I., Love, C.T., Carter, R. et al. Electrolyte conditions in lithium-ion batteries in presence of a thermal gradient. MRS Advances 6, 564–569 (2021). https://doi.org/10.1557/s43580-021-00074-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43580-021-00074-5

Navigation