Skip to main content
Log in

Phenyl hydrazine and 2,4-dinitrophenyl hydrazine-based polymeric materials for the electrochemical quantification of thrombotonin

  • Original Paper
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

This article highlighting the electrochemical response of phenyl hydrazine and 2,4-dinitrophenyl hydrazine-based polymeric materials for the quantification of the neurotransmitter thrombotonin. The electrochemical analysis was performed on phenyl hydrazine and 2,4-dinitrophenyl hydrazine electropolymers on pencil graphite electrode using cyclic and differential pulse voltammetry. The electrochemical behavior of thrombotonin on the modified electrode was investigated in pH 7 buffer solution of 0.1 M and the oxidation of thrombotonin seemed to be an irreversible adsorption-diffusion-controlled process The modification of the pencil graphite electrode was confirmed by field-emission scanning electron microscopy, X-ray diffraction analysis, electrochemical impedance spectroscopy and Fourier transmittance infrared spectrometry. The fabricated electrochemical sensor can be applied for the quantification of thrombotonin from human blood sample in the linear range from 0.1 to 250 μM with a lower detection limit of 0.01 μM and the sensitivity of the electrode obtained was 2.47 μA/μM/cm2. The fabricated electrode shows enhanced sensitivity, selectivity with good reproducibility, and prolonged stability compared to previously reported differential pulse voltammetric sensors.

Graphic abstract

The research paper is entitled as “Phenyl hydrazine and 2,4-dinitrophenyl hydrazine-based polymeric materials for the electrochemical quantification of thrombotonin”. The developed sensor is highly selective and sensitive and can be used for the determination of thrombotonin in real samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data generated and analyzed in the current study are available from the corresponding author on request.

References

  1. A. Getinet, Common Neurotransmitters: criteria for neurotransmitters, key locations, classifications and functions. Am. J. Psychiatry Neurosci. 4, 91–95 (2016)

    Google Scholar 

  2. K. Khoshnevisan, H. Maleki, E. Honarvarfard, H. Baharifar, M. Gholami, F. Faridbod, B. Larijani, R.F. Majidi, M.R. Khorramizadeh, Nanomaterial based electrochemical sensing of the biomarker serotonin: a comprehensive review. Microchim. Acta 186, 49 (2019). https://doi.org/10.1007/s00604-018-3069-y

    Article  CAS  Google Scholar 

  3. A. Abbaspour, A. Noori, A cyclodextrin host-guest recognition approach to an electrochemical sensor for simultaneous quantification of serotonin and dopamine. Biosens. Bioelectron. 26, 4674–4680 (2011). https://doi.org/10.1016/j.bios.2011.04.061

    Article  CAS  Google Scholar 

  4. A. Özcan, Selective and sensitive electrochemical sensing of serotonin in human blood serum by means of electrochemically treated pencil graphite electrode. J. Appl. Sci. Eng. 17, 551–562 (2016)

    Google Scholar 

  5. A. Özcan, S. Ilkbas, Poly(pyrrole-3-carboxylic acid)-modified pencil graphite electrode for the determination of serotonin in biological samples by adsorptive stripping voltammetry. Sensors Actuators B 215, 518–524 (2015). https://doi.org/10.1016/j.snb.2015.03.100

    Article  CAS  Google Scholar 

  6. H.S. Han, H.K. Lee, J.M. You, H. Jeong, S. Jeon, Electrochemical biosensor for simultaneous determination of dopamine and serotonin based on electrochemically reduced GO-porphyrin. Sensors Actuators B 190, 886–895 (2014). https://doi.org/10.1016/j.snb.2013.09.022

    Article  CAS  Google Scholar 

  7. M.J. Song, S. Kim, K.K. Min, J.H. Jin, Electrochemical serotonin monitoring of poly(ethylenedioxythiophene):poly(sodium 4-styrenesulfonate)-modified fluorine-doped tin oxide by predeposition of self-assembled 4-pyridylporphyrin. Biosens. Bioelectron. 52, 411–416 (2014). https://doi.org/10.1016/j.bios.2013.08.040

    Article  CAS  Google Scholar 

  8. G. Ran, X. Chen, Y. Xia, Electrochemical detection of serotonin based on a poly (bromocresol green) film and Fe3O4 nanoparticles in a chitosan matrix. RSC Adv. 7, 1847–1851 (2017). https://doi.org/10.1039/C6RA25639B

    Article  CAS  Google Scholar 

  9. A. Babaei, A.R. Taheri, Nafion/Ni(OH)2 nanoparticles-carbon nanotube composite modified glassy carbon electrode as a sensor for simultaneous determination of dopamine and serotonin in the presence of ascorbic acid. Sensors Actuators B 176, 543–551 (2013). https://doi.org/10.1016/j.snb.2012.09.021

    Article  CAS  Google Scholar 

  10. H.S. Han, J.M. You, H. Jeong, S. Jeon, Synthesis of graphene oxide grafted poly(lactic acid) with palladium nanoparticles and its application to serotonin sensing. Appl. Surf. Sci. 284, 438–445 (2013). https://doi.org/10.1016/j.apsusc.2013.07.116

    Article  CAS  Google Scholar 

  11. X. Wang, D. Gao, M. Li, H. Li, C. Li, X. Wu, CVD graphene as an electrochemical sensing platform for simultaneous detection of biomolecules. Sci. Rep. 7, 7044 (2017). https://doi.org/10.1038/s41598-017-07646-2

    Article  CAS  Google Scholar 

  12. M. Satyanarayana, K.K. Reddy, K.V. Gobi, Nanobiocomposite based electrochemical sensor for sensitive determination of serotonin in presence of dopamine, ascorbic acid and uric acid in vitro. Electroanalysis 26, 2365–2372 (2014). https://doi.org/10.1002/elan.201400243

    Article  CAS  Google Scholar 

  13. J.M. Zen, I.L. Chen, Y. Shih, Voltammetric determination of serotonin in human blood using a chemically modified electrode. Anal. Chim. Acta 369, 103–108 (1998). https://doi.org/10.4172/2155-6210.1000154

    Article  CAS  Google Scholar 

  14. Z.H. Wang, Q.L. Liang, Y.M. Wang, G.A. Luo, Carbon nanotube-intercalated graphite electrode for simultaneous determination of dopamine and serotonin in the presence of ascorbic acid. J. Electroanal. Chem. 540, 129–134 (2003). https://doi.org/10.3390/s131014029

    Article  CAS  Google Scholar 

  15. G.M. Anderson, L.M. Hall, J.X. Yang, D.J. Cohen, Platelet dense granule release reaction monitored by high-performance liquid chromatography-fluorometric determination of endogenous serotonin. Anal. Biochem. 206, 64–67 (1992). https://doi.org/10.1016/S0003-2697(05)80011-9

    Article  CAS  Google Scholar 

  16. T. Fujimori, Y. Yamanishi, K. Yamatsu, T. Tajima, High Performance Liquid Chromatography (HPLC) determination of endogenous serotonin released from aggregating platelets. J Pharmacol Methods 7, 105–113 (1982). https://doi.org/10.1016/0160-5402(82)90022-5

    Article  CAS  Google Scholar 

  17. M. Kim, J.G. Lee, C.H. Yang, S. Lee, Silica stationary phase-based on-line sample enrichment coupled with LC-MS/MS for the quantification of dopamine, serotonin and their metabolites in rat brain microdialysates. Anal. Chim. Acta 923, 55–65 (2016). https://doi.org/10.1016/j.aca.2016.03.021

    Article  CAS  Google Scholar 

  18. A. Guillermo, M. Hernández, A.O. Dilia, G.G. Mario, J.L. Hector, Q. Naser, G.T. Carlos, Fluorescence of serotonin in the visible spectrum upon multiphotonic photoconversion. Biomed. Opt. Express 11, 1432 (2020). https://doi.org/10.1364/BOE.380412

    Article  Google Scholar 

  19. W.H.A. de Jong, H.L. Marianne, I. Wilkens, E.G.E. de Vries, P.K. Ido, Automated mass spectrometric analysis of urinary and plasma serotonin. Anal. Bioanal. Chem. 396, 2609–2616 (2010). https://doi.org/10.1007/s00216-010-3466-5

    Article  CAS  Google Scholar 

  20. R. Rejithamol, S. Beena, Electrochemical quantification of pyridoxine (VB6) in human blood from other water-soluble vitamins. Chem. Pap. 74, 2011–2020 (2020). https://doi.org/10.1007/s11696-019-01049-5

    Article  CAS  Google Scholar 

  21. R. Rejithamol, G.K. Rajasree, S. Beena, Electrochemical quantification of l-tryptophan via molecular imprinted pyromellitic acid polymer-based indium tin oxide electrode. J. Electrochem. Soc. 167, 117507 (2020). https://doi.org/10.1149/1945-7111/aba33e

    Article  CAS  Google Scholar 

  22. G.K. Rajasree, R. Rejithamol, S. Beena, Non-enzymatic electrochemical sensor for the simultaneous determination of adenosine, adenine and uric acid in whole blood and urine. Microchem. J. 155, 104745 (2020)

    Article  Google Scholar 

  23. R. Rejithamol, G.K. Rajasree, S. Beena, Disposable pencil graphite electrode decorated with a thin film of electro-polymerized 2, 3, 4, 6, 7, 8, 9, 10-octahydropyrimido [1, 2-a] azepine for simultaneous voltammetric analysis of dopamine, serotonin and tryptophan. Mater. Chem. Phys. 258, 123857 (2020)

    Article  Google Scholar 

  24. A. Krishnan, S. Beena, S.M.A. Shibli, A novel high performance Ti/Ti-W-reinforced polyaniline functionalized Ni-P electrode for high-sensitive detection of dopamine from urine sample. Mater. Chem. Phys. 244, 122680 (2020)

    Article  CAS  Google Scholar 

  25. S. Ramakrishnan, K.R. Pradeep, A. Raghul, R. Senthilkumar, M. Rangarajan, N.K. Kothurkar, One-step synthesis of pt-decorated graphene-carbon nanotube for electrochemical sensing of dopamine, uric acid and ascorbic acid. Anal. Methods 7, 779–786 (2015)

    Article  CAS  Google Scholar 

  26. A. Vadivaambigai, P.A. Senthilvasan, A.N. Kothurkar, M. Rangarajan, Graphene-oxide-based electrochemical sensor for salicylic acid. Nanosci. Nanotechnol. Lett. 7, 140–146 (2015)

    Article  Google Scholar 

  27. A.R. Rajamani, R. Kannan, S. Krishnan, S. Ramakrishnan, S.M. Raj, D. Kumaresan, M. Rangarajan, Electrochemical sensing of dopamine, uric acid and ascorbic acid using tRGO-TiO2 nanocomposites. J. Nanosci. Nanotechnol. 15, 5042–5047 (2015)

    Article  CAS  Google Scholar 

  28. S.A. Ozkan, J.M. Kauffmann, P. Zuman, Electroanalysis in Biomedical and Pharmaceutical Sciences (Springer, Berlin, 2015)

    Book  Google Scholar 

  29. M.J. O’Neil, The Merck Index—An Encyclopedia of Chemicals, Drugs, and Biologicals (UK, Royal Society of Chemistry, Cambridge, 2013), p. 883

    Google Scholar 

  30. I. Svancara, J. Zima, Possibilities and limitations of carbon paste electrodes in organic electrochemistry. Curr. Org. Chem. 15, 3043–3058 (2011)

    Article  CAS  Google Scholar 

  31. P.Y. Khashaba, H.R. Ali, M.M. El-Wekil, Simultaneous voltammetric analysis of anti-ulcer and D2—antagonist agents in binary mixture using redox sensor and their determination in human serum. Mater. Sci. Eng. 75, 733–741 (2017)

    Article  CAS  Google Scholar 

  32. P.Y. Khashaba, H.R. Ali, M.M. El-Wekil, Highly sensitive and selective complexation based voltammetric methods for the analysis of rabeprazole sodium in real samples. RSC Adv. 7, 3043–3050 (2017)

    Article  CAS  Google Scholar 

  33. M.H. Mahnashi, A.M. Mahmoud, S.A. Alkahtani, H.R. Ali, M.M. El-Wekil, Facile fabrication of a novel disposable pencil graphite electrode for simultaneous determination of promising immunosuppressant drugs mycophenolate mofetil and tacrolimus in human biological fluids. Anal. Bioanal. Chem. 412, 355–364 (2020)

    Article  CAS  Google Scholar 

  34. F.A. Mohamed, P.Y. Khashaba, R.Y. Shahin, M.M. El-Wekil, Tunable ternary nanocomposite prepared by electrodeposition for biosensing of centrally acting reversible acetyl cholinesterase inhibitor donepezil hydrochloride in real samples. Colloids Surf. A 567, 76–85 (2019)

    Article  CAS  Google Scholar 

  35. X. Zhang, Y. Wang, X. Ning, L. Li, J. Chen, D. Shan, Three dimensional porous self-assembled chestnut-like nickel-cobalt oxide structure as an electrochemical sensor for sensitive detection of hydrazine in water samples. Anal. Chim. Acta 1022, 28–36 (2018)

    Article  CAS  Google Scholar 

  36. P. Ning, G. Debin, H. Ting, W. Ruibing, W. Ian, J. Yongdong, X. Chuanqin, Removal of Th4+ ions from aqueous solutions by graphene oxide. J Radioanal. Nucl. Chem. 298, 1999–2008 (2013)

    Article  Google Scholar 

  37. M.S. Robert, X.W. Francis, J.K. David, Spectrometric Identification of Organic Compounds, 7th edn. (Wiley, Hoboken, 2005)

    Google Scholar 

  38. K. Aoki, K. Akimoto, K. Tokuda, H. Matsuda, J. Osteryoung, Linear sweep voltammetry at very small stationary disk electrodes. J. Electroanal. Chem. 171, 219–230 (1984)

    Article  CAS  Google Scholar 

  39. F. Lida, B.H. Ayemeh, M.H. Majid, Electrochemical behaviour and voltammetric determination of sulphadiazine using a multiwalled carbon nanotube composite film-glassy carbon electrode. J. Exp. Nanosci. 8, 947–956 (2013)

    Article  Google Scholar 

  40. N. Nasirizadeh, Z. Shekari, H.R. Zare, S.A. Ardakani, H. Ahmar, Developing a sensor for the simultaneous determination of dopamine, acetaminophen and tryptophan in pharmaceutical samples using a multi-walled carbon nanotube and oxadiazole modified glassy carbon electrode. J. Braz. Chem. Soc. 24, 1846–1856 (2013)

    Google Scholar 

  41. L.E. Amanda, F. Daniel, J.A. Shaw, J.M. Thomas, Electrochemistry of redox-active self-assembled monolayers. Coord. Chem. Rev. 25, 1769–1802 (2010)

    Google Scholar 

  42. U. Sivasankaran, A.E. Vikraman, D. Thomas, K. Girish Kumar, Nanomolar level determination of octyl gallate in fats and oils. Food Anal. Methods 9, 2115–2123 (2016)

    Article  Google Scholar 

  43. B.V. Sarada, T.N. Rao, D.A. Tryk, A. Fujishima, Electrochemical oxidation of histamine and serotonin at highly boron-doped diamond electrodes. Anal. Chem. 72, 1632–2163 (2000)

    Article  CAS  Google Scholar 

  44. N.S. Lopa, M. Rahman, H. Jang, S.C. Sutradhar, F. Ahmed, T. Ryu, W. Kim, A glassy carbon electrode modified with poly (2,4-dinitrophenylhydrazine) for simultaneous detection of dihydroxybenzene isomers. Microchim. Acta 23, 185 (2017)

    Google Scholar 

  45. M. Valcárcel, M.D. Luque de Castro (eds.), Sensors in analytical chemistry, in Techniques and Instrumentation in Analytical Chemistry, vol. 16 (Elsevier, Amsterdam, 1994), pp. 13–47

Download references

Author information

Authors and Affiliations

Authors

Contributions

RR conducted all experiments and analyses. SB supervised RR. SB and RR co-wrote the manuscript.

Corresponding author

Correspondence to S. Beena.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Ethical approval

The authors confirmed that obtained approval from the institution and consent from the donor for the experiments involving human subjects (blood).

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1037 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rejithamol, R., Beena, S. Phenyl hydrazine and 2,4-dinitrophenyl hydrazine-based polymeric materials for the electrochemical quantification of thrombotonin. MRS Advances 6, 750–757 (2021). https://doi.org/10.1557/s43580-021-00116-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43580-021-00116-y

Navigation