Skip to main content
Log in

Phase identification and morphology in rolled and annealed U-22.5at.%Zr foils

  • Original Paper
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

A uranium-22.5 atomic% zirconium (U-22.5at.%Zr) alloy was characterized using transmission electron microscopy (TEM) following hot/cold-rolling, and again following a post-roll anneal as part of a novel fabrication process for the alloy. The TEM characterization included selected area electron diffraction, energy-dispersive X-ray spectroscopy (EDS), and bright field imaging. The δ-UZr2 phase fraction was 53.47% ± 0.09% in the rolled foil, substantially larger than the near-equilibrium value, 21.93% ± 0.03% in the annealed foil. Phase fractions and EDS analysis suggest a defect-driven U supersaturation in the δ-UZr2 phase. The lamellae mean random spacing was 0.21 μm ± 0.03 μm in the rolled foil and 0.70 μm ± 0.10 μm in the annealed foil. The δ-UZr2 L3 values were 0.11 μm ± 0.02 μm in the rolled foil and 0.16 μm ± 0.03 μm in the annealed foil. Zirconium inclusions in all foils were face-centered cubic (space group Fm-3 m), reinforcing that further investigations into the formation mechanism(s) and evolution of Zr inclusions are needed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are not publicly available beyond what is included in this publication due to being included in an ongoing PhD program. However, the data may be made available from the corresponding author on reasonable request.

References

  1. W.J. Carmack, H.M. Chichester, D.L. Porter, D.W. Wootan, Metallography and fuel cladding chemical interaction in fast flux test facility irradiated metallic U-10Zr MFF-3 and MFF-5 fuel pins. J. Nucl. Mater. 473, 167–177 (2016). https://doi.org/10.1016/j.jnucmat.2016.02.019

    Article  CAS  Google Scholar 

  2. J.M. Harp, D.L. Porter, B.D. Miller, T.L. Trowbridge, W.J. Carmack, Scanning electron microscopy examination of a Fast Flux Test Facility irradiated U-10Zr fuel cross section clad with HT-9. J. Nucl. Mater. 494, 227–239 (2017). https://doi.org/10.1016/j.jnucmat.2017.07.040

    Article  CAS  Google Scholar 

  3. W.J. Williams, D.M. Wachs, M.A. Okuniewski, S. van den Berghe, Assessment of swelling and constituent redistribution in uranium-zirconium fuel using phenomena identification and ranking tables (PIRT). Ann. Nucl. Energy. 136, 107016 (2020). https://doi.org/10.1016/j.anucene.2019.107016

    Article  CAS  Google Scholar 

  4. C. Matthews, C. Unal, J. Galloway, D.D. Keiser, S.L. Hayes, Fuel-cladding chemical interaction in U-Pu-Zr metallic fuels: a critical review. Nucl. Technol. 198, 231–259 (2017). https://doi.org/10.1080/00295450.2017.1323535

    Article  Google Scholar 

  5. Y.H. Sohn, M.A. Dayananda, G.L. Hofman, R.V. Strain, S.L. Hayes, Analysis of constituent redistribution in the γ (bcc) U-Pu–Zr alloys under gradients of temperature and concentrations. J. Nucl. Mater. 279, 317–329 (2000). https://doi.org/10.1016/S0022-3115(99)00290-1

    Article  CAS  Google Scholar 

  6. G.L. Hofman, S.L. Hayes, M.C. Petri, Temperature gradient driven constituent redistribution in U-Zr alloys. J. Nucl. Mater. 227, 277–286 (1996). https://doi.org/10.1016/0022-3115(95)00129-8

    Article  CAS  Google Scholar 

  7. G.L. Hofman, R.G. Pahl, C.E. Lahm, D.L. Porter, Swelling behavior of U-Pu-Zr fuel. Metall. Trans. A 21, 517–528 (1990). https://doi.org/10.1007/BF02671924

    Article  Google Scholar 

  8. R.G. Pahl, D.L. Porter, C.E. Lahm, G.L. Hofman, Experimental studies of U-Pu-Zr fast reactor fuel pins in the experimental breeder reactor-ll. Metall. Trans. A 21, 1863–1870 (1990). https://doi.org/10.1007/BF02647233

    Article  Google Scholar 

  9. N.N. Carlson, C. Unal, J.D. Galloway, Formulation of the Constituent Distribution Model Implemented into the BISON Framework for the Analysis of Performance of Metallic Fuels with Some Initial Simulations Results, Los Alamos Natl. Lab. Rep. LAUR 13-26 (2013)

  10. J.D. Hales, R.L. Williamson, S.R. Novascone, G. Pastore, B.W. Spencer, D.S. Stafford, K.A. Gamble, D.M. Perez, R.J. Gardner, W. Liu, J. Galloway, C. Matthews, C. Unal, N. Carlson, BISON Theory Manual The Equations Behind Nuclear Fuel Analysis, INL/EXT-13-29930 Rev. 3 (2016)

  11. J. Galloway, C. Unal, N. Carlson, D. Porter, S. Hayes, Modeling constituent redistribution in U-Pu-Zr metallic fuel using the advanced fuel performance code BISON. Nucl. Eng. Des. 286, 1–17 (2015). https://doi.org/10.1016/j.nucengdes.2015.01.014

    Article  CAS  Google Scholar 

  12. R.R. Mohanty, J. Bush, M.A. Okuniewski, Y.H. Sohn, Thermotransport in γ(bcc) U-Zr alloys: a phase-field model study. J. Nucl. Mater. 414, 211–216 (2011). https://doi.org/10.1016/j.jnucmat.2011.03.028

    Article  CAS  Google Scholar 

  13. A.A. Bauer, G.H. Beatty, F.A. Rough, R.F. Dickerson, Constitution of Zirconium-Uranium Alloys Containing Oxygen or Nitrogen, Battelle Meml. Inst. BMI-1187 (1957)

  14. F.A. Rough, A.A. Bauer, Constitution of uranium and thorium alloys, Battelle Meml. Inst. BMI-1300 (1958)

  15. W.J. Williams, M.A. Okuniewski, S.C. Vogel, J. Zhang, An in-situ neutron diffraction study of crystallographic evolution and thermal expansion coefficients in U-22.5at.%Zr during annealing. JOM 72, 2042–2050 (2020). https://doi.org/10.1007/s11837-020-04086-8

    Article  CAS  Google Scholar 

  16. Y. Xie, S.C. Vogel, J.M. Harp, M.T. Benson, L. Capriotti, Microstructure evolution of U-Zr system in A thermal cycling neutron diffraction experiment: extruded U–10Zr (wt.%). J. Nucl. Mater. 544, 152665 (2021). https://doi.org/10.1016/j.jnucmat.2020.152665

    Article  CAS  Google Scholar 

  17. S. Ahn, S. Irukuvarghula, S.M. McDeavitt, Thermophysical investigations of the uranium–zirconium alloy system. J. Alloys Compd. 611, 355–362 (2014). https://doi.org/10.1016/j.jallcom.2014.05.126

    Article  CAS  Google Scholar 

  18. S.T. Zegler, The uranium-rich end of the uranium-zirconium system, Argonne Natl. Lab Metall. Progr. 3.1.3. ANL-6055 (1962)

  19. H. Okamoto, U-zr (uranium-zirconium). J. Phase Equilibria 28, 499 (1992). https://doi.org/10.1007/BF02645399

    Article  Google Scholar 

  20. K.H. Kim, S.J. Oh, S.K. Kim, C.T. Lee, C.B. Lee, Microstructural characterization of U-Zr alloy fuel slugs for sodium-cooled fast reactor. Surf. Interface Anal. (2012). https://doi.org/10.1002/sia.4989

    Article  Google Scholar 

  21. A.C. Lawson, C.E. Olsen, J.W. Richardson, M.H. Mueller, G.H. Lander, Structure of β-uranium. Acta Crystallogr. Sect. B 44, 89–96 (1988). https://doi.org/10.1107/S0108768187009406

    Article  Google Scholar 

  22. M. Akabori, T. Ogawa, A. Itoh, Y. Morii, The lattice stability and structure of delta -UZr2 at elevated temperatures. J. Phys. Condens. Matter. 7, 8249–8257 (1995). https://doi.org/10.1088/0953-8984/7/43/005

    Article  CAS  Google Scholar 

  23. S. Irukuvarghula, S. Ahn, S.M. McDeavitt, Decomposition of the γ phase in as-cast and quenched U-Zr alloys. J. Nucl. Mater. 473, 206–217 (2016). https://doi.org/10.1016/j.jnucmat.2016.02.028

    Article  CAS  Google Scholar 

  24. A.P. Moore, C. Deo, M.I. Baskes, M.A. Okuniewski, Atomistic mechanisms of morphological evolution and segregation in U-Zr alloys. Acta Mater. 115, 178–188 (2016). https://doi.org/10.1016/j.actamat.2016.05.052

    Article  CAS  Google Scholar 

  25. W.J. Williams, M.A. Okuniewski, L. Sudderth, D. Wachs, S. Van Den Berghe, Fabrication and characterization of U-Zr foils for the DISECT project. Trans. Am. Nucl. Soc. 118, 348–351 (2018)

    Google Scholar 

  26. W.J. Williams, C. Hale, E. Sikik, M. Sprenger, G. Borghmans, D.M. Wachs, S. van den Berghe, M.A. Okuniewski, T. Maddock, B. Boer, Thermal-hydraulics and neutronics overview of the DISECT experiment. Trans. Am. Nucl. Soc. 120, 348 (2019)

    Google Scholar 

  27. J.L. McDuffee, G.L. Bell, R.J. Ellis, R.W. Hobbs, M.A. Okuniewski, L.L. Snead, Design, Fabrication, and Testing of Gadolinium-Shielded Metal Fuel Samples in the Hydraulic Tube of the High Flux Isotope Reactor, in: Water React. Fuel Perform. Meet. Fuel/LWR Fuel Perform. Meet., Sendai, Japan (2014), p. 100084

  28. M. Klinge, More features, more tools, more CrysTBox. J. Appl. Crystallogr. (2017). https://doi.org/10.1107/S1600576717006793

    Article  Google Scholar 

  29. E.E. Underwood, Quantitative Stereology for Microstructural Analysis (Springer, Boston, 1970)

    Google Scholar 

  30. G.F. Vander Voort, A. Roósz, Measurement of the interlamellar spacing of pearlite. Metallography 17, 1–17 (1984). https://doi.org/10.1016/0026-0800(84)90002-8

    Article  CAS  Google Scholar 

  31. E.R. Boyko, The structure of the δ phase in the uranium–zirconium system. Acta Crystallogr. 10, 712–713 (1957). https://doi.org/10.1107/s0365110x57002492

    Article  CAS  Google Scholar 

  32. H. Blank, Fractional packing densities and fast diffusion in uranium and other light actinides. J. Alloys Compd. 268, 180–187 (1998). https://doi.org/10.1016/S0925-8388(97)00604-X

    Article  CAS  Google Scholar 

  33. C. Basak, G.J. Prasad, H.S. Kamath, N. Prabhu, An evaluation of the properties of As-cast U-rich U-Zr alloys. J. Alloys Compd. 480, 857–862 (2009). https://doi.org/10.1016/j.jallcom.2009.02.077

    Article  CAS  Google Scholar 

  34. M. Kato, K. Morimoto, H. Sugata, K. Konashi, M. Kashimura, T. Abe, Solidus and liquidus temperatures in the UO2-PuO2 system. J. Nucl. Mater. 373, 237–245 (2008). https://doi.org/10.1016/j.jnucmat.2007.06.002

    Article  CAS  Google Scholar 

  35. A. Aitkaliyeva, J.W. Madden, C.A. Papesch, J.I. Cole, TEM identification of subsurface phases in ternary U-Pu–Zr fuel. J. Nucl. Mater. 473, 75–82 (2016). https://doi.org/10.1016/j.jnucmat.2016.02.022

    Article  CAS  Google Scholar 

  36. Y. Xie, M.T. Benson, J.A. King, R.D. Mariani, J. Zhang, Characterization of U-Zr fuel with alloying additive Sb for immobilizing fission product lanthanides. J. Nucl. Mater. 498, 332–340 (2018). https://doi.org/10.1016/j.jnucmat.2017.10.039

    Article  CAS  Google Scholar 

  37. D.E. Janney, T.P. O’Holleran, Zr inclusions in actinide-Zr alloys: New data and ideas about how they form. J. Nucl. Mater. 460, 13–15 (2015). https://doi.org/10.1016/j.jnucmat.2015.01.065

    Article  CAS  Google Scholar 

  38. D.E. Janney, J.R. Kennedy, J.W. Madden, T.P. O’Holleran, Crystal structure of high-Zr inclusions in an alloy containing U, Pu, Np, Am, Zr and rare-earth elements. J. Nucl. Mater. 448, 109–112 (2014). https://doi.org/10.1016/j.jnucmat.2014.01.044

    Article  CAS  Google Scholar 

  39. I. Manna, P.P. Chattopadhyay, F. Banhart, H.J. Fecht, Formation of face-centered-cubic zirconium, by mechanical attrition. Appl. Phys. Lett. 81, 4136–4138 (2002). https://doi.org/10.1063/1.1519942

    Article  CAS  Google Scholar 

  40. H. Zhao, X. Hu, M. Song, S. Ni, Mechanisms for deformation induced hexagonal close-packed structure to face-centered cubic structure transformation in zirconium. Scr. Mater. 132, 63–67 (2017). https://doi.org/10.1016/j.scriptamat.2017.01.034

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was partially supported by the US Department of Energy, Office of Nuclear Energy (NE), under DOE Idaho Operations Office Contract DE-AC07-05ID14517 through a Nuclear Science User Facilities experimental project and the Advanced Fuel Campaign. TEM Characterization took place in the Irradiated Material Characterization Laboratory at Idaho National Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter J. Williams.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 26 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Williams, W.J., Yao, T., Sudderth, L. et al. Phase identification and morphology in rolled and annealed U-22.5at.%Zr foils. MRS Advances 6, 1037–1042 (2021). https://doi.org/10.1557/s43580-021-00162-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43580-021-00162-6

Navigation