Skip to main content
Log in

Scalable Production Method for Graphene Oxide Water Vapor Separation Membranes

  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Membranes for selective water vapor separation were assembled from graphene oxide suspension using techniques compatible with high volume industrial production. The large-diameter graphene oxide flake suspensions were synthesized from graphite materials via relatively efficient chemical oxidation steps with attention paid to maintaining flake size and achieving high graphene oxide concentrations. Graphene oxide membranes produced using scalable casting methods exhibited water vapor flux and water/nitrogen selectivity performance meeting or exceeding that of membranes produced using vacuum-assisted laboratory techniques. (PNNL-SA-117497)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Kim, L. J. Cote and J. Huang, “Two Dimensional Soft Material: New Faces of Graphene Oxide,” Acc. Chem. Res. 45(8) 1356 (2012).

    Article  CAS  Google Scholar 

  2. R. R. Nair, H. A. Wu, P. N. Jayaram, I. V. Grigorieva and A. K. Geim, “Unimpeded permeation of water through helium-leak-tight graphene-based membrane,” Science 335 442 (2012).

    Article  CAS  Google Scholar 

  3. R. K. Joshi, P. Carbone, F. C. Wang, V. G. Kravets, Y. Su, I. V. Grigorieva1, H. A. Wu, A. K. Geim and R. R. Nair,”Precise and Ultrafast Molecular Sieving Through Graphene Oxide Membranes,” Science 343(6172) 752 (2014).

    Article  CAS  Google Scholar 

  4. D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Z. Sun, A. Slesarev, L. B. Alemany, Wei Lu and J. M. Tour, “Improved synthesis of graphene oxide,” ACS Nano 4 4806 (2010).

    Article  CAS  Google Scholar 

  5. W. Liu, J. Zhang, N. Canfield and L. Saraf, “Preparation of robust, thin zeolite membrane sheet for molecular separation,” Ind. Eng. Chem. Res. 50 11677 (2011).

    Article  CAS  Google Scholar 

  6. H. Sijbesma, K. Nymeijer, R. van Marwijk, R. Heijboer, J. Potreck and M. Wessling, “Flue gas dehydration using polymer membranes,” J. Membr. Sci. 313 263 (2008).

    Article  CAS  Google Scholar 

  7. D. An, L. Yang, T.-J. Wang, and B. Liu, “Separation performance of graphene oxide membrane in aqueous solution,” Ind. Eng. Chem. Res. 55(17) 4803–4810 (2016).

    Article  CAS  Google Scholar 

  8. D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. B. Dommett, G. Evmenenko, S. T. Nguyen, and R. S. Ruoff, “Preparation and characterization of graphene oxide paper,” Nature, 448(7152) 457–460 (2007).

    Article  CAS  Google Scholar 

  9. Y. Su, H. Wei, R. Gao, Z. Yang, J. Zhang, Z. Zhong, and Y. Zhang, “Exceptional negative thermal expansion and viscoelastic properties of graphene oxide paper,” Carbon, 50(8) 2804– 2809 (2012).

    Article  CAS  Google Scholar 

  10. J. Potreck, K. Nijmeijer, T. Kosinski, and M. Wessling, “Mixed water vapor/gas transport through the rubbery polymer PEBAX® 1074,” J. Membrane Sci., 338(1–2) 11–16 (2009).

    Article  CAS  Google Scholar 

  11. S. Kim, S. Zhou, Y. Hu, M. Acik, Y. J. Chabal, C. Berger, W. de Heer, A. Bongiorno and Elisa Riedo, “Room-temperature metastability of multilayer graphene oxide films,” Nature Mat. 11 544 (2012).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fifield, L.S., Shin, Y., Liu, W. et al. Scalable Production Method for Graphene Oxide Water Vapor Separation Membranes. MRS Advances 1, 2091–2098 (2016). https://doi.org/10.1557/adv.2016.485

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2016.485

Navigation