Skip to main content

Advertisement

Log in

Needs and Enabling Technologies for Stretchable Electronics Commercialization

  • Articles
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Stretchable electronics represent an emerging class of devices that can be compressed, twisted and conform to very complicated shapes. The mechanical and electrical compliances of the technology promise to open up applications for healthcare, energy and entertainment purposes. However, advancement in the field has been hindered by material related constraints. Moreover, the current microfabrication facilities are optimized for rigid substrates such as silicon, which have significant different properties compared to elastomers. In this paper, four categories of enabling technologies for stretchable electronics commercialization are critically reviewed, namely: the novel design of stretchable structures, use of non-conventional materials, state-of-art printing techniques and also the patterning of electrodes or metal interconnects via conventional manufacturing techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chortos, A. & Bao, Z. Skin-inspired electronic devices. Mater. Today 17, 321–331 (2014).

    Article  CAS  Google Scholar 

  2. Kim, D.-H., Ghaffari, R., Lu, N. & Rogers, J. A. Flexible and Stretchable Electronics for Biointegrated Devices. Annu. Rev. Biomed. Eng. 14, 113–128 (2012).

    Article  CAS  Google Scholar 

  3. Lacour, S. P. et al. Flexible and stretchable micro-electrodes for in vitro and in vivo neural interfaces. Med Biol Eng Comput 48, 945–54 (2010).

    Article  Google Scholar 

  4. Lee, J. H., Kim, H., Kim, J. H. & Lee, S.-H. Soft implantable microelectrodes for future medicine: prosthetics, neural signal recording and neuromodulation. Lab Chip 16, 959–976 (2016).

    Article  CAS  Google Scholar 

  5. Chortos, A., Liu, J. & Bao, Z. Pursuing prosthetic electronic skin. Nat. Mater. 15, 937–950 (2016).

    Article  CAS  Google Scholar 

  6. Liu, Y. et al. Epidermal mechano-acoustic sensing electronics for cardiovascular diagnostics and human-machine interfaces. Sci. Adv. 2, 1–12 (2016).

    CAS  Google Scholar 

  7. Fan, F. R., Tang, W. & Wang, Z. L. Flexible Nanogenerators for Energy Harvesting and Self-Powered Electronics. Adv. Mater. 28, 4283–4305 (2016).

    Article  CAS  Google Scholar 

  8. Kim, C.-C. et al. Highly stretchable, transparent ionic touch panel. Science 353, 682–7 (2016).

    Article  CAS  Google Scholar 

  9. Marketsandmarkets.com. Stretchable Electronics Market by Component - 2023. (2015). Available at: http://www.marketsandmarkets.com/Market-Reports/stretchable-electronic-market-181339852.html. (Accessed: 6th December 2016)

  10. Future Markets, inc. Nanotechnology in Smart Textiles and Wearables, Medical and Healthcare. (2016). Available at: http://www.reportlinker.com/p04422604-summary/Nanotechnology-in-Smart-Textiles-and-Wearables.html.(Accessed: 6th December 2016)

  11. Pailler-Mattei, C., Bec, S. & Zahouani, H. In vivo measurements of the elastic mechanical properties of human skin by indentation tests. Med. Eng. Phys. 30, 599–606 (2008).

    Article  CAS  Google Scholar 

  12. Kim, D.-H. et al. Materials for multifunctional balloon catheters with capabilities in cardiac electrophysiological mapping and ablation therapy. Nat. Mater. 10, 316–23 (2011).

    Article  CAS  Google Scholar 

  13. Khang, D.-Y., Jiang, H., Huang, Y. & Rogers, J. A. A Stretchable Form of Single-Crystal Silicon for High-Performance Electronics on Rubber Substrates. Science 311, 208–212 (2006).

    Article  CAS  Google Scholar 

  14. Kim, J. et al. Stretchable silicon nanoribbon electronics for skin prosthesis. Nat. Commun. 5, 5747 (2014).

    Article  CAS  Google Scholar 

  15. Gao, L. et al. Optics and Nonlinear Buckling Mechanics in Large-Area, Highly Stretchable Arrays of Plasmonic Nanostructures. ACS Nano 9, 5968–5975 (2015).

    Article  CAS  Google Scholar 

  16. Liu, Z. F. et al. Hierarchically buckled sheath-core fibers for superelastic electronics, sensors, and muscles. Science. 349, (2015).

  17. Fruett, F. The Piezojunction Effect in Silicon, its Consequences and Applications for Integrated Circuits and Sensors. (Delft University Press, Delft, 2001).

    Google Scholar 

  18. Lacour, S. P., Jones, J., Wagner, S., Li, T. & Suo, Z. Stretchable Interconnects for Elastic Electronic Surfaces. Proceedings of the IEEE 93, 1459–1466 (2005).

    Article  CAS  Google Scholar 

  19. Kim, D.-H. et al. Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations. Proc. Natl. Acad. Sci. U. S. A. 105, 18675–80 (2008).

    Article  CAS  Google Scholar 

  20. Vanfleteren, J. et al. Printed circuit board technology inspired stretchable circuits. MRS Bull. 37, 254–260 (2012).

    Article  Google Scholar 

  21. Fan, J. A. et al. Fractal design concepts for stretchable electronics. Nat. Commun. 5, 3266 (2014).

    Article  CAS  Google Scholar 

  22. T. Someya, editor, Stretchable Electronics (WILEY-VCH Verlag GmbH & Co. KGaA,Weinheim, 2013).

    Google Scholar 

  23. Young Oh, J. et al. Intrinsically stretchable and healable semiconducting polymer for organic transistors. Nat. Publ. Gr. 539, (2016).

  24. Benight, S. J., Wang, C., Tok, J. B. H. & Bao, Z. Stretchable and self-healing polymers and devices for electronic skin. Progress in Polymer Science 38, 1961–1977 (2013).

    Article  CAS  Google Scholar 

  25. Mohammed, A. & Pecht, M. A stretchable and screen-printable conductive ink for stretchable electronics. Appl. Phys. Lett. 109, 184101 (2016).

    Article  CAS  Google Scholar 

  26. Matsuhisa, N. et al. Printable elastic conductors with a high conductivity for electronic textile applications. Nat. Commun. 6, 7461 (2015).

    Article  CAS  Google Scholar 

  27. Jin, S. W., Park, J., Hong, S. Y., Park, H. & Jeong, Y. R. Stretchable Loudspeaker using Liquid Metal Microchannel. Nat. Publ. G r. 5, 1–13 (2000).

    Google Scholar 

  28. Li, G., Wu, X. & Lee, D.-W. A galinstan-based inkjet printing system for highly stretchable electronics with self-healing capability. Lab Chip 16, 1366–1373 (2016).

    Article  CAS  Google Scholar 

  29. Gao, Y., Shi, W., Wang, W., Leng, Y. & Zhao, Y. Inkjet Printing Patterns of Highly Conductive Pristine Graphene on Flexible Substrates. Ind. Eng. Chem. Res. 53, 16777–16784 (2014).

    Article  CAS  Google Scholar 

  30. Chun, K.-Y. et al. Highly conductive, printable and stretchable composite films of carbon nanotubes and silver. Nat. Nanotechnol. 5, 853–857 (2010).

    Article  CAS  Google Scholar 

  31. Sekiguchi, A. et al. Robust and Soft Elastomeric Electronics Tolerant to Our Daily Lives. Nano Lett. 15, 5716–5723 (2015).

    Article  CAS  Google Scholar 

  32. Seifert, T. et al. Additive Manufacturing Technologies Compared: Morphology of Deposits of Silver Ink Using Inkjet and Aerosol Jet Printing. Ind. Eng. Chem. Res. 54, 769–779 (2015).

    Article  CAS  Google Scholar 

  33. Krebs, F. C. Fabrication and processing of polymer solar cells: A review of printing and coating techniques. Solar Energy Materials and Solar Cells 93, 394–412 (2009).

    Article  CAS  Google Scholar 

  34. Tekin, E., Smith, P. J. & Schubert, U. S. Inkjet printing as a deposition and patterning tool for polymers and inorganic particles. Soft Matter 4, 703–713 (2008).

    Article  CAS  Google Scholar 

  35. Castrejón-Pita, J. R. et al. Future, opportunities and challenges of inkjet technologies. At. Sprays 23, 541–565 (2013).

    Article  Google Scholar 

  36. Kim, J. et al. Highly Transparent and Stretchable Field-Effect Transistor Sensors Using Graphene-Nanowire Hybrid Nanostructures. Adv. Mater. 27, 3292–3297 (2015).

    Article  CAS  Google Scholar 

  37. Kaltenbrunner, M. et al. An ultra-lightweight design for imperceptible plastic electronics. Nature 499, 458–463 (2013).

    Article  CAS  Google Scholar 

  38. Optomec. Aerosol Jet 300 Series Systems - Datasheet. (2015). Available at: http://www.optomec.com/wp-content/uploads/2014/04/AJ-300-Datasheet_Web.pdf. (Accessed: 4th August 2016)

  39. Cho, J. H. et al. Printable ion-gel gate dielectrics for low-voltage polymer thin-film transistors on plastic. Nat. Mater. 7, 900–906 (2008).

    Article  CAS  Google Scholar 

  40. Grunwald, I. et al. Surface biofunctionalization and production of miniaturized sensor structures using aerosol printing technologies. Biofabrication 2, 014106 (2010).

    Article  CAS  Google Scholar 

  41. Ha, M. et al. Aerosol jet printed, low voltage, electrolyte gated carbon nanotube ring oscillators with sub-5 μs stage delays. Nano Lett. 13, 954–960 (2013).

    Article  CAS  Google Scholar 

  42. Tait, J. G. et al. Uniform Aerosol Jet printed polymer lines with 30 μm width for 140 ppi resolution RGB organic light emitting diodes. Org. Electron. physics, Mater. Appl. 22, 40–43 (2015).

    CAS  Google Scholar 

  43. Wang, K., Chang, Y. H., Zhang, C. & Wang, B. Conductive-on-demand: Tailorable polyimide/carbon nanotube nanocomposite thin film by dual-material aerosol jet printing. Carbon N. Y. 98, 397–403 (2016).

    Article  CAS  Google Scholar 

  44. Liu, R. et al. Fabrication of platinum-decorated single-walled carbon nanotube based hydrogen sensors by aerosol jet printing. Nanotechnology 23, 505301 (2012).

    Article  CAS  Google Scholar 

  45. Guo, L. & Deweerth, S. P. An effective lift-off method for patterning high-density gold interconnects on an elastomeric substrate. Small 6, 2847–2852 (2010).

    Article  CAS  Google Scholar 

  46. Adrega, T. & Lacour, S. P. Stretchable gold conductors embedded in PDMS and patterned by photolithography: fabrication and electromechanical characterization. J. Micromechanics Microengineering 20, 055025 (2010).

    Article  CAS  Google Scholar 

  47. Chou, N. et al. Crack-free and reliable lithographical patterning methods on PDMS substrate. J. Micromechanics Microengineering 23, 125035 (2013).

    Article  CAS  Google Scholar 

  48. Lee, J. N., Park, C. & Whitesides, G. M. Solvent Compatibility of Poly(dimethylsiloxane)-Based Microfluidic Devices. Anal. Chem. 75, 6544–6554 (2003).

    Article  CAS  Google Scholar 

  49. Patel, J. N., Kaminska, B., Gray, B. L. & Gates, B. D. A sacrificial SU-8 mask for direct metallization on PDMS. J. Micromechanics Microengineering 19, 115014 (2009).

    Article  CAS  Google Scholar 

  50. Jeong, D.-W., Jang, N.-S., Kim, K.-H. & Kim, J.-M. A stretchable sensor platform based on simple and scalable lift-off micropatterning of metal nanowire network. RSC Adv. 6, 74418– 74425 (2016).

    Article  CAS  Google Scholar 

  51. Meacham, K. W., Giuly, R. J., Guo, L., Hochman, S. & DeWeerth, S. P. A lithographically-patterned, elastic multi-electrode array for surface stimulation of the spinal cord. Biomed. Microdevices 10, 259–269 (2008).

    Article  Google Scholar 

  52. Franssila, S. Introduction to Microfabrication Introduction to Microfabrication Second Edition. (John Wiley & Sons, Ltd, Chichester, 2010).

    Book  Google Scholar 

  53. Minev, I. R. et al. Electronic dura mater for long-term multimodal neural interfaces. Science. 347, (2015).

  54. Gong, S. et al. A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nat. Commun. 5, 838–843 (2014).

    Google Scholar 

  55. Viventi, J. et al. Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo. Nat. Neurosci. 14, 1599–605 (2011).

    Article  CAS  Google Scholar 

  56. Song, Y. M. et al. Digital cameras with designs inspired by the arthropod eye. Nature 497, 95– 99 (2013).

    Article  CAS  Google Scholar 

  57. Byun, I., Coleman, A. W. & Kim, B. Transfer of thin Au films to polydimethylsiloxane (PDMS) with reliable bonding using (3-mercaptopropyl)trimethoxysilane (MPTMS) as a molecular adhesive. J. Micromech. Microeng 23, 85016–10 (2013).

    Article  CAS  Google Scholar 

  58. Deng, W. et al. A High-yield Two-step Transfer Printing Method for Large-scale Fabrication of Organic Single-crystal Devices on Arbitrary Substrates. Sci. Rep. 4, 4772–4776 (2014).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, E., Jing, Q., Smith, M. et al. Needs and Enabling Technologies for Stretchable Electronics Commercialization. MRS Advances 2, 1721–1729 (2017). https://doi.org/10.1557/adv.2017.2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2017.2

Navigation