Skip to main content

Advertisement

Log in

Porous Carbon/CeO2 Nanoparticles Hybrid Material for High-Capacity Super-Capacitors

  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

The increasing demand for energy storage devices has propelled research for developing efficient super-capacitors (SC) with long cycle life and ultrahigh energy density. Carbon-based materials are commonly used as electrode materials for SC. Herein, we report a new approach to improve the SC performance utilizing a Porous Carbon/Cerium Oxide nanoparticle (PC-CON) hybrid as electrode material synthesized via a low temperature hydrothermal method. Through this approach, charges can be stored not only via electrochemical double layer capacitance (EDLC) from PC but also through pseudo-capacitive effect from CeO2 nanoparticles (NPs). The electrode-electrolyte interaction due to the electrochemical properties of the electrolyte provides an enhanced voltage window for the SC. Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), X-ray Photoelectron Spectroscopy (XPS), and X-Ray Diffraction (XRD) measurements were used for the characterization of this PC/CeO2 hybrid material system. The testing results have shown that a maximum of 500% higher specific capacitance could be obtained using PC/CeO2 instead of using PC only.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Liu, L. Gan, W. Xiong, Z. Xu, D. Zhu, and L. Chen, J. of Mater. Che., 2, 2555–2562 (2014).

    Article  CAS  Google Scholar 

  2. M. A. I. Shuvo, M. A. R. Khan, H. Karim, P. Morton, T. Wilson, and Y. Lin, ACS appl. mater. & inter., 5, 7881–7885 (2013).

    Article  CAS  Google Scholar 

  3. D. Wang, D. Choi, J. Li, Z. Yang, Z. Nie, R. Kou, et al., ACS nano, 3, 907–914, (2009).

  4. H. Karim, M. A. I. Shuvo, M. T. Islam, G. Rodriguez, A. Sandoval, M. I. Nandasiri, SPIE Sma. Str. and Mater.+ Nond. Eval. and Heal.Mon., 94390I-94390I-6 (2015).

  5. M. A. I. Shuvo, M. A. R. Khan, H. Karim, P. Morton, T. Wilson, M. Mendoza, SPIE Sma. Str. and Mater.+ Nond. Eval. and Heal.Mon., 868918–868918-9 (2013).

  6. M. A. I. Shuvo, G. Rodriguez, M. T. Islam, H. Karim, N. Ramabadran, J. C. Noveron, J. of Appl. Phy., 118, 125102 (2015).

    Article  Google Scholar 

  7. M. Rajib, M. A. I. Shuvo, H. Karim, D. Delfin, S. Afrin, and Y. Lin, Cer. Inter., 41, 1807–1813 (2015).

    Article  CAS  Google Scholar 

  8. M. Mendoza, M. A. Rahaman Khan, M. A. Ishtiaque Shuvo, A. Guerrero, and Y. Lin, ISRN Nano., 2012 (2012).

    Google Scholar 

  9. M. Rajib, R. Martinez, M. Shuvo, H. Karim, D. Delfin, S. Afrin, Inter. J. of Appl. Cer. Tech. (2015).

  10. L. Yang, S. Cheng, Y. Ding, X. Zhu, Z. L. Wang, and M. Liu, Nano let., 12, 321–325 (2011).

    Article  Google Scholar 

  11. M. A. I. Shuvo, T.-L. B. Tseng, M. A. R. Khan, H. Karim, P. Morton, D. Delfin, J. of Appl. Phy., 114, 104306 (2013).

    Article  Google Scholar 

  12. M. A. I. Shuvo, H. Karim, M. Rajib, D. Delfin, and Y. Lin, SPIE Sma. Str. and Mater.+ Nond. Eval. and Heal.Mon., 905808–905808-8 (2014).

  13. C. XianáGuo and C. MingáLi, Dalt. Trans., 40, 6388–6391 (2011).

    Article  Google Scholar 

  14. N. Padmanathan and S. Selladurai, RSC Adv., 4, 6527–6534 (2014).

    Google Scholar 

  15. Y. Zhang, H. Feng, X. Wu, L. Wang, A. Zhang, T. Xia, et al., Inter. J. of hydr. ener., 34, 4889–4899 (2009).

    Article  CAS  Google Scholar 

  16. M. Zhi, C. Xiang, J. Li, M. Li, and N. Wu, Nanosca., 5, 72–88 (2013).

    Article  CAS  Google Scholar 

  17. H. Jiang, J. Ma, and C. Li, Adv. Mater., 24, 4197–4202 (2012).

    Article  CAS  Google Scholar 

  18. A. K. Srivastava, CRC Pre. (2014).

  19. Y.-P. Sun, K. Fu, Y. Lin, and W. Huang, Acc. of Chem. Res., 35, 1096–1104 (2002).

    Article  CAS  Google Scholar 

  20. C. Li, N. Sun, J. Ni, J. Wang, H. Chu, H. Zhou, et al., J. of Sol. Sta. Chem., 181, 2620–2625 (2008).

    Article  CAS  Google Scholar 

  21. L. Jian, C. Xiaoqian, S. Alexey, and K. Michael, Grap., 2012 (2012).

    Google Scholar 

  22. M. Srivastava, A. K. Das, P. Khanra, M. E. Uddin, N. H. Kim, and J. H. Lee, J. of Mater. Chem. A, 1, 9792–9801 (2013).

    Article  CAS  Google Scholar 

  23. S. Maensiri, C. Masingboon, P. Laokul, W. Jareonboon, V. Promarak, P. L. Anderson, Crys. gro. & des., 7, 950–955 (2007).

    Article  CAS  Google Scholar 

  24. Z. Jamalzadeh, M. Haghighi, and N. Asgari, Fron. of Envir. Sci. & Eng., 7, 365–381 (2013).

    Article  CAS  Google Scholar 

  25. Y.-C. Chen, Y.-K. Hsu, Y.-G. Lin, Y.-K. Lin, Y.-Y. Horng, L.-C. Chen, Electro. Acta, 56, 7124–7130 (2011).

    Article  CAS  Google Scholar 

  26. N. S. Arul, D. Mangalaraj, R. Rajendran, A. N. Grace, and J. I. Han, J. of Mater. Chem. A (2015).

  27. X. Lang, A. Hirata, T. Fujita, and M. Chen, Nat. Nano., 6, 232–236 (2011).

    Article  CAS  Google Scholar 

  28. Z. Wu, X.-L. Huang, Z.-L. Wang, J.-J. Xu, H.-G. Wang, and X.-B. Zhang, Scien. rep., 4 (2014).

    Google Scholar 

  29. J. Gamby, P. Taberna, P. Simon, J. Fauvarque, and M. Chesneau, J. of Pow. Sou., 101, 109–116 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H., Shuvo, M.A.I., Karim, H. et al. Porous Carbon/CeO2 Nanoparticles Hybrid Material for High-Capacity Super-Capacitors. MRS Advances 2, 2471–2480 (2017). https://doi.org/10.1557/adv.2017.420

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2017.420

Navigation