Skip to main content
Log in

Orientation informed nanoindentation of α-titanium: Indentation pileup in hexagonal metals deforming by prismatic slip

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

This study reports on the anisotropic indentation response of α-titanium. Coarse-grained titanium was characterized by electron backscatter diffraction. Sphero-conical nanoindentation was performed for a number of different crystallographic orientations. The grain size was much larger than the size of the indents to ensure quasi-single-crystal indentation. The hexagonal c-axis was determined to be the hardest direction. Surface topographies of several indents were measured by atomic force microscopy. Analysis of the indent surfaces, following Zambaldi and Raabe (Acta Mater. 58(9), 3516–3530), revealed the orientation-dependent pileup behavior of α-titanium during axisymmetric indentation. Corresponding crystal plasticity finite element (CPFE) simulations predicted the pileup patterns with good accuracy. The constitutive parameters of the CPFE model were identified by a nonlinear optimization procedure, and reproducibly converged toward easy activation of prismatic glide systems. The calculated critical resolved shear stresses were 150 ± 4, 349 ± 10, and 1107 ± 39 MPa for prismatic and basal 〈a〉-glide and pyramidal〈c + a〉-glide, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

TABLE I.
FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
TABLE II.
TABLE III.
TABLE IV.
FIG. 5.
FIG. 6.
FIG. 7.
TABLE V.

Similar content being viewed by others

References

  1. C. Zambaldi and D. Raabe: Plastic anisotropy of gamma-TiAl revealed by axisymmetric indentation. Acta Mater. 58, 3516 (2010).

    Article  CAS  Google Scholar 

  2. G. Lütjering and J.C. Williams: Titanium (Engineering Materials and Processes) (Springer, Berlin, Germany, 2007).

    Google Scholar 

  3. T.R. Bieler, R.M. Trevino, and L. Zeng: Alloys: Titanium, in Encyclopedia of Condensed Matter Physics (Elsevier, Oxford, 2005), pp. 65–76.

    Chapter  Google Scholar 

  4. F.P.E. Dunne, A. Walker, and D. Rugg: A systematic study of hcp crystal orientation and morphology effects in polycrystal deformation and fatigue. Proc. R. Soc. London, Sect. A 463, 1467 (2007).

    CAS  Google Scholar 

  5. X. Wu, S. Kalidindi, C. Necker, and A. Salem: Modeling anisotropic stress-strain response and crystallographic texture evolution in alpha-titanium during large plastic deformation using Taylor-type models: Influence of initial texture and purity. Metall. Mater. Trans. A 39, 3046 (2008).

    Article  CAS  Google Scholar 

  6. L. Wang, R. Barabash, Y. Yang, T. Bieler, M. Crimp, P. Eisenlohr, W. Liu, and G. Ice: Experimental characterization and crystal plasticity modeling of heterogeneous deformation in polycrystalline alpha-Ti. Metall. Mater. Trans. A 42, 626 (2011).

    Article  CAS  Google Scholar 

  7. W. Hutchinson and M. Barnett: Effective values of critical resolved shear stress for slip in polycrystalline magnesium and other hcp metals. Scr. Mater. 63, 737 (2010).

    Article  CAS  Google Scholar 

  8. T. Ungár, G. Ribárik, L. Balogh, A.A. Salem, S.L. Semiatin, and G.B. Vaughan: Burgers vector population, dislocation types and dislocation densities in single grains extracted from a polycrystalline commercial-purity Ti specimen by X-ray line-profile analysis. Scr. Mater. 63, 69 (2010).

    Article  CAS  Google Scholar 

  9. C.J. Bettles, P.A. Lynch, A.W. Stevenson, D. Tomus, M.A. Gibson, K. Wallwork, and J. Kimpton: In situ observation of strain evolution in CP-Ti over multiple length scales. Metall. Mater. Trans. A 42, 100 (2010).

    Article  CAS  Google Scholar 

  10. T.R. Bieler, P.D. Nicolaou, and S.L. Semiatin: An experimental and theoretical investigation of the effect of local colony orientations and misorientation on cavitation during hot working of Ti-6Al-4V. Metall. Mater. Trans. A 36, 129 (2005).

    Article  Google Scholar 

  11. T.B. Britton, S. Birosca, M. Preuss, and A.J. Wilkinson: Electron backscatter diffraction study of dislocation content of a macrozone in hot-rolled Ti-6Al-4V alloy. Scr. Mater. 62, 639 (2010).

    Article  CAS  Google Scholar 

  12. Y. Yang, L. Wang, T. Bieler, P. Eisenlohr, and M.A. Crimp: Quantitative atomic force microscopy characterization and crystal plasticity finite element modeling of heterogeneous deformation in commercial purity titanium. Metall. Mater. Trans. A 42, 636 (2011).

    Article  CAS  Google Scholar 

  13. T. Bieler, P. Eisenlohr, F. Roters, D. Kumar, D. Mason, M. Crimp, and D. Raabe: The role of heterogeneous deformation on damage nucleation at grain boundaries in single phase metals. Int. J. Plast. 25, 1655 (2009).

    Article  CAS  Google Scholar 

  14. S. Zaefferer: A study of active deformation systems in titanium alloys: Dependence on alloy composition and correlation with deformation texture. Mater. Sci. Eng., A 344, 20 (2003).

    Article  Google Scholar 

  15. P. Franciosi and A. Zaoui: Multislip in f.c.c. crystals a theoretical approach compared with experimental data. Acta Metall. 30, 1627 (1982).

    Article  Google Scholar 

  16. P. Franciosi: The concepts of latent hardening and strain-hardening in metallic single-crystals. Acta Metall. 33, 1601 (1985).

    Article  CAS  Google Scholar 

  17. A.T. Churchman: The slip modes of titanium and the effect of purity on their occurrence during tensile deformation of single crystals. Proc. R. Soc. London, Ser. A 226, 216, http://www.jstor.org/stable/99430 (1954).

    Article  CAS  Google Scholar 

  18. N.E. Paton and W.A. Backofen: Plastic deformation of titanium at elevated temperatures. Metall. Trans. B 1, 2839 (1970).

    CAS  Google Scholar 

  19. T. Sakai and M.E. Fine: Plastic-deformation of Ti-Al single-crystals in prismatic slip. Acta Metall. 22, 1359 (1974).

    Article  CAS  Google Scholar 

  20. A. Akhtar: Basal slip and twinning in alpha-titanium single-crystals. Metall. Trans. A 6, 1105 (1975).

    Article  Google Scholar 

  21. M.P. Biget and G. Saada: Low-temperature plasticity of high-purity alpha-titanium single-crystals. Philos. Mag. A 59, 747 (1989).

    Article  CAS  Google Scholar 

  22. J.C. Williams, R.G. Baggerly, and N.E. Paton: Deformation behavior of HCPTi-Al alloy single crystals. Metall. Mater. Trans. A 33, 837 (2002).

    Article  Google Scholar 

  23. D. Raabe, D. Ma, and F. Roters: Effects of initial orientation, sample geometry and friction on anisotropy and crystallographic orientation changes in single crystal microcompression deformation: A crystal plasticity finite element study. Acta Mater. 55, 4567 (2007).

    Article  CAS  Google Scholar 

  24. L. Wang, P. Eisenlohr, Y. Yang, T. Bieler, and M. Crimp: Nucleation of paired twins at grain boundaries in titanium. Scr. Mater. 63, 827 (2010).

    Article  CAS  Google Scholar 

  25. I.J. Beyerlein, L. Capolungo, P.E. Marshall, R.J. McCabe, and C.N. Tome: Statistical analyses of deformation twinning in magnesium. Philos. Mag. 90, 4073 (2010).

    Article  CAS  Google Scholar 

  26. F. Roters: Application of crystal plasticity fem from single crystal to bulk polycrystal. Comput. Mater. Sci. 32, 509 (2005).

    Article  Google Scholar 

  27. F. Roters, P. Eisenlohr, L. Hantcherli, D.D. Tjahjanto, T.R. Bieler, and D. Raabe: Overview of constitutive laws, kinematics, homogenization, and multiscale methods in crystal plasticity finite element modeling: Theory, experiments, applications. Acta Mater. 58, 1152 (2010).

    Article  CAS  Google Scholar 

  28. S.R. Kalidindi, C.A. Bronkhorst, and L. Anand: Crystallographic texture evolution in bulk deformation processing of fcc metals. J. Mech. Phys. Solids 40, 537 (1992).

    Article  CAS  Google Scholar 

  29. E.H. Lee: Elastic-plastic deformation at finite strains. J. Appl. Mech. 36, 1 (1969).

    Article  Google Scholar 

  30. J. Hutchinson: Bounds and self-consistent estimates for creep of polycrystalline materials. Proc. R. Soc. London, Ser. A 348, 101 (1976).

    Article  CAS  Google Scholar 

  31. D. Peirce, R.J. Asaro, and A. Needleman: Material rate dependence and localized deformation in crystalline solids. Acta Metall. 31, 1951 (1983).

    Article  CAS  Google Scholar 

  32. R.J. Asaro and A. Needleman: Overview 42. Texture development and strain-hardening in rate dependent polycrystals. Acta Metall. 33, 923 (1985).

    Article  CAS  Google Scholar 

  33. D. Peirce, R.J. Asaro, and A. Needleman: An analysis of nonuniform and localized deformation in ductile single-crystals. Acta Metall. 30, 1087 (1982).

    Article  CAS  Google Scholar 

  34. M.S.C. Software: MARC2010, Volume D—User Subroutines and Special Routines. MSC.Software Corp. (2010).

    Google Scholar 

  35. A.K. Bhattacharya and W.D. Nix: Finite-element simulation of indentation experiments. Int. J. Solids Struct. 24, 881 (1988).

    Article  Google Scholar 

  36. Y. Liu, B. Wang, M. Yoshino, S. Roy, H. Lu, and R. Komanduri: Combined numerical simulation and nanoindentation for determining mechanical properties of single crystal copper at mesoscale. J. Mech. Phys. Solids 53, 2718 (2005).

    Article  CAS  Google Scholar 

  37. G. Simmons and H. Wang: Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook (MIT Press, Cambridge, MA, 1971).

    Google Scholar 

  38. J. Nelder and R. Mead: A simplex method for function minimization. Comput. J. 7, 308 (1965).

    Article  Google Scholar 

  39. W. Press, S. Teukolsky, W. Vetterling, and B. Flannery: Numerical Recipes C++ (Cambridge University Press, Cambridge, U.K., 2007).

    Google Scholar 

  40. M. Grujicic and S. Batchu: A crystal plasticity materials constitutive model for polysynthetically-twinned gamma-TiAl+alpha(2)-Ti3Al single crystals. J. Mater. Sci. 36, 2851 (2001).

    Article  CAS  Google Scholar 

  41. Gwyddion: Free AFM Data Analysis Software. http://gwyddion.net (2004–2009).

  42. G. Viswanathan, E. Lee, D.M. Maher, S. Banerjee, and H.L. Fraser: Direct observations and analyses of dislocation substructures in the alpha-phase of an alpha/beta Ti-alloy formed by nanoindentation. Acta Mater. 53, 5101 (2005).

    Article  CAS  Google Scholar 

  43. E. Merson, R. Brydson, and A. Brown: The effect of crystallographic orientation on the mechanical properties of titanium. J. Phys Conf. Ser. 126, 1 (2008).

    Article  CAS  Google Scholar 

  44. Y. Lee, J. Hahn, S. Nahm, J. Jang, and D. Kwon: Investigations on indentation size effects using a pile-up corrected hardness. J. Phys. D: Appl. Phys. 41, 074027 (2008).

    Article  CAS  Google Scholar 

  45. K. Tsuya: Effect of temperature on hardness anisotropy of beryllium single crystals. J. Nucl. Mater. 22, 148 (1967).

    Article  CAS  Google Scholar 

  46. C. Zambaldi: Micromechanical Modeling of γ-TiAl Based Alloys, Dissertation RWTH Aachen (Shaker Verlag, Aachen, Germany, 2010), http://darwin.bth.rwth-aachen.de/opus3/volltexte/2011/3607/.

    Google Scholar 

  47. Y. Gaillard, A.H. Macías, J. Muñoz-Saldaña, M. Anglada, and G. Trápaga: Nanoindentation of BaTiO3: Dislocation nucleation and mechanical twinning. J. Phys. D 42, 085502 (2009).

    Article  CAS  Google Scholar 

  48. Q. Yu, Z. Shan, J. Li, X. Huang, L. Xiao, J. Sun, and E. Ma: Strong crystal size effect on deformation twinning. Nature 463, 335 (2010).

    Article  CAS  Google Scholar 

  49. Y. Liu, S.V.J. Ma, M.Y.H. Lu, and R. Komanduri: Orientation effects in nanoindentation of single crystal copper. Int. J. Plast. 24, 1990 (2008).

    Article  CAS  Google Scholar 

  50. G. Bolzon, G. Maier, and M. Panico: Material model calibration by indentation, imprint mapping and inverse analysis. Int. J. Solids Struct. 41, 2957 (2004).

    Article  Google Scholar 

  51. M. Bocciarelli, G. Bolzon, and G. Maier: Parameter identification in anisotropic elastoplasticity by indentation and imprint mapping. Mech. Mater. 37, 855 (2005).

    Article  Google Scholar 

  52. A. Yonezu, Y. Kuwahara, K. Yoneda, H. Hirakata, and K. Minoshima: Estimation of the anisotropic plastic property using single spherical indentation—An FEM study. Comput. Mater. Sci. 47, 611 (2009).

    Article  CAS  Google Scholar 

  53. J. Gong and A.J. Wilkinson: Anisotropy in the plastic flow properties of single-crystal α-titanium determined from micro-cantilever beams. Acta Mater. 57, 5693 (2009).

    Article  CAS  Google Scholar 

  54. E. Demir, D. Raabe, N. Zaafarani, and S. Zaefferer: Investigation of the indentation size effect through the measurement of the geometrically necessary dislocations beneath small indents of different depths using EBSD tomography. Acta Mater. 57, 559 (2009).

    Article  CAS  Google Scholar 

  55. G. Pharr, E. Herbert, and Y. Gao: The indentation size effect: A critical examination of experimental observations and mechanistic interpretations. Annu. Rev. Mater. Res. 40, 271 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Zambaldi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zambaldi, C., Yang, Y., Bieler, T.R. et al. Orientation informed nanoindentation of α-titanium: Indentation pileup in hexagonal metals deforming by prismatic slip. Journal of Materials Research 27, 356–367 (2012). https://doi.org/10.1557/jmr.2011.334

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2011.334

Navigation