Skip to main content

Advertisement

Log in

The Meyer–Neldel rule in amorphous TiO2 films with different Fe content

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Amorphous titania thin films with increasing Fe content have been prepared by RF magnetron sputtering. X-ray absorption spectroscopy revealed modifications of both local structures/environment of the Ti and Fe atoms, with formation of phases containing amorphous material and a magnetite-like phase. The temperature dependence of the electrical conductivity of the films was investigated for temperatures higher than half of the Debye temperature (T > 391 K). It was found that the electrical conductivity in the amorphous Fe/TiO2 films obeys the Meyer–Neldel rule. The origin of this behavior is explained on the basis of the multiphonon-assisted hopping model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.

Similar content being viewed by others

References

  1. X. Quan, Q. Zhao, H. Tan, X. Sang, F. Wang, and Y. Dai: Comparative study of lanthanide oxide doped titanium dioxide photocatalysts prepared by coprecipitation and sol–gel process. Mater. Chem. Phys. 114, 90 (2009).

    Article  CAS  Google Scholar 

  2. Z.M. Seeley, A. Bandyopadhyay, and S. Bose: Titanium dioxide thin films for high temperature gas sensors. Thin Solid Films 519, 434 (2010).

    Article  CAS  Google Scholar 

  3. D. Mardare, N. Iftimie, M. Crisan, M. Raileanu, A. Yildiz, T. Coman, K. Pomoni, and A. Vomvas: Electrical conduction mechanism and gas sensing properties of Pd-doped TiO2 films. J. Non-Cryst. Solids 357, 1774 (2011).

    Article  CAS  Google Scholar 

  4. W. Jarernboon, S. Pimanpang, S. Maensiri, E. Swatsitang, and V. Amornkitbamrung: Optimization of titanium dioxide film prepared by electrophoretic deposition for dye-sensitized solar cell application. Thin Solid Films 517, 4663 (2009).

    Article  CAS  Google Scholar 

  5. C. Euvananont, C. Junin, K. Inpor, P. Limthongkul, and C. Thanachayanont: TiO2 optical coating layers for self-cleaning applications. Ceram. Int. 34, 1067 (2008).

    Article  CAS  Google Scholar 

  6. Y. Matsumoto, M. Murakami, T. Shono, T. Hasegawa, T. Fukumura, M. Kawasaki, P. Ahmet, T. Chikyow, S. Koshihara, and H. Koinuma: Room-temperature ferromagnetism in transparent transition metal-doped titanium dioxide. Science 291, 854 (2001).

    Article  CAS  Google Scholar 

  7. A.P. Singh, S. Kumari, R. Shrivastav, S. Dass, and V.R. Satsangi: Iron doped nanostructured TiO2 for photoelectrochemical generation of hydrogen. Int. J. Hydrogen Energy 33, 5363 (2008).

    Article  CAS  Google Scholar 

  8. L. Fan, J. Dongmei, L. Yan, and M. Xueming: Magnetism of Fe-doped TiO2 milled in different milling atmospheres. Physica B 403, 2193 (2008).

    Article  Google Scholar 

  9. D. Mardare, F. Iacomi, and D. Luca: Substrate and Fe-doping effects on the hydrophilic properties of TiO2 thin films. Thin Solid Films 515, 6474 (2007).

    Article  CAS  Google Scholar 

  10. S.J. Gurman: Interpretation of EXAFS data. J. Synchrotron Radiat. 2, 56 (1995).

    Article  CAS  Google Scholar 

  11. J. Strunk, W.C. Vining, and A.T. Bell: A study of oxygen vacancy formation and annihilation in submonolayer coverages of TiO2 dispersed on MCM-48. J. Phys. Chem. C 114, 16937 (2010).

    Article  CAS  Google Scholar 

  12. F. Farges, G.E. Brown Jr., and J.J. Rehr: Ti K-edge XANES studies of Ti coordination and disorder in oxide compounds: Comparison between theory and experiment. Phys. Rev. B 56, 1809 (1997).

    Article  CAS  Google Scholar 

  13. C.M. Teodorescu, J.M. Esteva, M. Womes, A. El Afif, R.C. Karnatak, A.M. Flank, and P. Lagarde: Sodium 1s photoabsorption spectra of Na and NaF clusters deposited in rare gas matrices. J. Electron. Spectrosc. Relat. Phenom. 106, 233 (2000).

    Article  CAS  Google Scholar 

  14. C.M. Teodorescu, A. El Afif, J.M. Esteva, and R.C. Karnatak: Na 1s excitations in vapor and solid sodium halides. Phys. Rev. B 63, 233106 (2001).

    Article  Google Scholar 

  15. F. de Groot, G. Vankó, and P. Glatzel: The 1s x-ray absorption pre-edge structures in transition metal oxides. J. Phys. Condens. Matter 21, 104207 (2009).

    Article  Google Scholar 

  16. S. Matsuo, N. Sakaguchi, and H. Wakita: Pre-edge features of Ti K-edge x-ray absorption near-edge structure for the local structure of sol-gel titanium oxides. Anal. Sci. 21, 805 (2005).

    Article  CAS  Google Scholar 

  17. S. Sakurai, S. Sasaki, M. Okube, H. Ohara, and T. Toyoda: Cation distribution and valence state in Mn–Zn ferrite examined by synchrotron x-rays. Physica B 403, 3589 (2008).

    Article  CAS  Google Scholar 

  18. C. Dragoi, N.G. Gheorghe, G.A. Lungu, L. Trupina, A.G. Ibanescu, and C.M. Teodorescu: X-ray photoelectron spectroscopy of pulsed laser deposited Pb(Zr, Ti)O3−δ. Phys. Status Solidi A 209, 1049 (2012).

    Article  CAS  Google Scholar 

  19. N.G. Gheorghe, M.A. Husanu, G.A. Lungu, R.M. Costescu, D. Macovei, D.G. Popescu, and C.M. Teodorescu: Magnetism and atomic structure in Fe/Si(001) interfaces. Dig. J. Nanomater. Bios. (2012, accepted).

    Google Scholar 

  20. A. Yildiz, F. Iacomi, and D. Mardare: Polaron transport in TiO2 thin films. J. Appl. Phys. 108(8), 083701 (2010).

    Article  Google Scholar 

  21. D. Mardare and G.I. Rusu: Electrical conduction mechanism in polycrystalline titanium oxide thin films. J. Non-Cryst. Solids 356(28–30), 1395 (2010).

    Article  CAS  Google Scholar 

  22. W. Meyer and H. Neldel: Relation between the energy constant and the quantity constant in the conductivity–temperature formula of oxide semiconductors. Z. Tech. Phys. 12, 588 (1937).

    Google Scholar 

  23. T.J. Coutts and N.M. Pearsall: Meyer–Neldel rule in solar cells. Appl. Phys. Lett. 44(1), 134 (1984).

    Article  CAS  Google Scholar 

  24. D.L. Stabler and C.R. Wronski: Optically induced conductivity changes in discharge-produced hydrogenated amorphous silicon. J. Appl. Phys. 51(6), 3262 (1980).

    Article  Google Scholar 

  25. B. Rosenberg, B.B. Bhowmik, H.C. Harder, and E. Postow: Pre-exponential factor in semiconducting organic substances. J. Chem. Phys. 49(9), 4108 (1968).

    Article  CAS  Google Scholar 

  26. K. Shimakawa and F. Abdel-Wahab: The Meyer–Neldel rule in chalcogenide glasses. Appl. Phys. Lett. 70(5), 652 (1997).

    Article  CAS  Google Scholar 

  27. R.S. Crandall: Defect relaxation in amorphous silicon: Stretched exponentials, the Meyer-Neldel rule, and the Staebler-Wronski effect. Phys. Rev. B 43(5), 4057 (1991).

    Article  CAS  Google Scholar 

  28. B.G. Yoon, C. Lee, and J. Jang: Effect of the statistical shift on the anomalous conductivities of n-type hydrogenated amorphous silicon. J. Appl. Phys. 60(2), 673 (1986).

    Article  CAS  Google Scholar 

  29. A. Yelon and B. Movaghar: The Meyer–Neldel conductivity prefactor for chalcogenide glasses. Appl. Phys. Lett. 71(24), 3549 (1997).

    Article  CAS  Google Scholar 

  30. X.J. Han, L. Bergqvist, P.H. Dederichs, H. Müller-Krumbhaar, J.K. Christie, S. Scandolo, and P. Tangney: Polarizable interatomic force field for TiO2 parametrized using density functional theory. Phys. Rev. B 81(13), 134108 (2010).

    Article  Google Scholar 

  31. N.F. Mott: Conduction in glasses containing transition metal ions. J. Non-Cryst. Solids 1(1), 1 (1968).

    Article  CAS  Google Scholar 

  32. D. Emin and T. Holstein: Adiabatic theory of an electron in a deformable continuum. Phys. Rev. Lett. 36(6), 323 (1976).

    Article  Google Scholar 

  33. D. Emin: Phonon-assisted transition rates I. Optical-phonon-assisted hopping in solids. Adv. Phys. 24(3), 305 (1975).

    Article  Google Scholar 

  34. G. Kemeny and B. Rosenberg: Small polarons in organic and biological semiconductors. J. Chem. Phys. 53(9), 3549 (1970).

    Article  CAS  Google Scholar 

  35. N. Robertson and L. Friedman: Non-radiative transitions. Philos. Mag. 33(5), 753 (1976).

    Article  CAS  Google Scholar 

  36. K. Shimakawa: Phonon-assisted transition rates I. Optical-phonon-assisted hopping in solids. Philos. Mag. B 60(3), 377 (1989).

    Article  CAS  Google Scholar 

  37. H. Sakata, K. Sega, and B.K. Chaudhuri: Multiphonon tunneling conduction in vanadium-cobalt-tellurite glasses. Phys. Rev. B 60(5), 3230 (1991).

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by CNCSIS Contract PCCE-ID_76/2010. Petronela Rambu and Daniel Florea acknowledge the financial support from the Romanian programs POS-DRU/89/1.5/S/49944 and POSDRU/CPP 107/DMI 1.5/S/78342, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diana Mardare.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mardare, D., Yildiz, A., Apetrei, R. et al. The Meyer–Neldel rule in amorphous TiO2 films with different Fe content. Journal of Materials Research 27, 2271–2277 (2012). https://doi.org/10.1557/jmr.2012.193

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.193

Navigation