Skip to main content
Log in

Fabrication of vertical graphene-based nanocomposite thin films

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

While planar graphene has revolutionized science and engineering in many different areas, one of its close relatives, vertical graphene (VG), also known as carbon nanowalls, has not been investigated as extensively. Compared to planar graphene that is grown parallel to the substrate, VG can grow almost vertically on a wide variety of substrates. In this study, we report the fabrication and characterization of VG-based nanocomposite thin films, where the graphene sheets are uniformly distributed in the host polymer. A novel fabrication method was developed and the properties of the fabricated nanocomposites were characterized. The results showed that in our method graphene sheets are much more uniformly dispersed and common issues in graphene nanocomposites, such as agglomeration and breaking of the sheets during dispersion, are avoided. The increase in the Young’s modulus and tensile strength of the fabricated nanocomposites is much higher than that of the samples fabricated using the traditional methods of randomly dispersing graphene using a sonicator or high-speed stirrer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6

Similar content being viewed by others

References

  1. A. Kumar, A.A. Voevodin, D. Zemlyanov, D.N. Zakharov, and T.S. Fisher: Rapid synthesis of few-layer graphene over Cu foil. Carbon 50, 1546 (2012).

    Article  CAS  Google Scholar 

  2. N. Soin, S.S. Roy, T.H. Lim, and J.A. McLaughlin: Microstructural and electrochemical properties of vertically aligned few layered graphene (flg) nanoflakes and their application in methanol oxidation. Mater. Chem. Phys. 129, 1051 (2011).

    Article  CAS  Google Scholar 

  3. A. Malesevic, R. Vitchev, K. Schouteden, A. Volodin, L. Zhang, G. Van Tendeloo, A. Vanhulsel, and C. Van Haesendonck: Synthesis of few-layer graphene via microwave plasma-enhanced chemical vapour deposition. Nanotechnology 19, 305604 (2008).

    Article  Google Scholar 

  4. J. Fang, I. Levchenko, T. van der Laan, S. Kumar, and K. Ostrikov: Multipurpose nanoporous alumina–carbon nanowall bi-dimensional nano-hybrid platform via catalyzed and catalyst-free plasma cvd. Carbon 78, 627 (2014).

    Article  CAS  Google Scholar 

  5. R.A. Quinlan, M. Cai, R.A. Outlaw, S.M. Butler, J.R. Miller, and A.N. Mansour: Investigation of defects generated in vertically oriented graphene. Carbon 64, 92 (2013).

    Article  CAS  Google Scholar 

  6. A.T.T. Koh, Y.M. Foong, L. Pan, Z. Sun, and D.H.C. Chua: Effective large-area free-standing graphene field emitters by electrophoretic deposition. Appl. Phys. Lett. 101, 183107 (2012).

    Article  Google Scholar 

  7. S.K. Behura, I. Mukhopadhyay, A. Hirose, Q. Yang, and O. Jani: Vertically oriented few-layer graphene as an electron field-emitter. Phys. Status Solidi A 210, 1817 (2013).

    Article  CAS  Google Scholar 

  8. S. Hassan, M. Suzuki, S. Mori, and A.A. El-Moneim: MnO2/carbon nanowall electrode for future energy storage application: Effect of carbon nanowall growth period and MnO2 mass loading. RSC Adv. 4, 20479 (2014).

    Article  CAS  Google Scholar 

  9. V.A. Krivchenko, D.M. Itkis, S.A. Evlashin, D.A. Semenenko, E.A. Goodilin, A.T. Rakhimov, A.S. Stepanov, N.V. Suetin, A.A. Pilevsky, and P.V. Voronin: Carbon nanowalls decorated with silicon for lithium-ion batteries. Carbon 50, 1438 (2012).

    Article  CAS  Google Scholar 

  10. S.C. Shin, A. Yoshimura, T. Matsuo, M. Mori, M. Tanimura, A. Ishihara, K-i. Ota, and M. Tachibana: Carbon nanowalls as platinum support for fuel cells. J. Appl. Phys. 110, 104308 (2011).

    Article  Google Scholar 

  11. J.R. Miller, R.A. Outlaw, and B.C. Holloway: Graphene double-layer capacitor with ac line-filtering performance. Science 329, 1637 (2010).

    Article  CAS  Google Scholar 

  12. V.A. Krivchenko, S.A. Evlashin, K.V. Mironovich, N.I. Verbitskiy, A. Nefedov, C. Wöll, A.Y. Kozmenkova, N.V. Suetin, S.E. Svyakhovskiy, D.V. Vyalikh, A.T. Rakhimov, A.V. Egorov, and L.V. Yashina: Carbon nanowalls: The next step for physical manifestation of the black body coating. Sci. Rep. 3, 3328 (2013).

    Article  CAS  Google Scholar 

  13. D.H. Seo, A.E. Rider, S. Kumar, L.K. Randeniya, and K. Ostrikov: Vertical graphene gas- and bio-sensors via catalyst-free, reactive plasma reforming of natural honey. Carbon 60, 221 (2013).

    Article  CAS  Google Scholar 

  14. C. Lee, X. Wei, J.W. Kysar, and J. Hone: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385 (2008).

    Article  CAS  Google Scholar 

  15. S. Cranford and M. Buehler: Packing efficiency and accessible surface area of crumpled graphene. Phys. Rev. B 84, 205451 (2011).

    Article  Google Scholar 

  16. M. Moniruzzaman and K.I. Winey: Polymer nanocomposites containing carbon nanotubes. Macromolecules 39, 5194 (2006).

    Article  CAS  Google Scholar 

  17. N.G. Sahoo, S. Rana, J.W. Cho, L. Li, and S.H. Chan: Polymer nanocomposites based on functionalized carbon nanotubes. Prog. Polym. Sci. 35, 837 (2010).

    Article  CAS  Google Scholar 

  18. A. Hirsch: Functionalization of single-walled carbon nanotubes. Angew. Chem., Int. Ed. 41, 1853 (2002).

    Article  CAS  Google Scholar 

  19. W.Z. Yuan, J.Z. Sun, Y. Dong, M. Häussler, F. Yang, H.P. Xu, A. Qin, J.W.Y. Lam, Q. Zheng, and B.Z. Tang: Wrapping carbon nanotubes in pyrene-containing poly(phenylacetylene) chains: Solubility, stability, light emission, and surface photovoltaic properties. Macromolecules 39, 8011 (2006).

    Article  CAS  Google Scholar 

  20. J. Chen, M.A. Hamon, H. Hu, Y. Chen, A.M. Rao, P.C. Eklund, and R.C. Haddon: Solution properties of single-walled carbon nanotubes. Science 282, 5386 (1998).

    Google Scholar 

  21. Q. Zhang, D.R. Lippits, and S. Rastogi: Dispersion and rheological aspects of SWNTs in ultrahigh molecular weight polyethylene. Macromolecules 39, 658 (2005).

    Article  Google Scholar 

  22. M.A. Rafiee, J. Rafiee, I. Srivastava, Z. Wang, H. Song, Z-Z. Yu, and N. Koratkar: Fracture and fatigue in graphene nanocomposites. Small 6, 179 (2010).

    Article  CAS  Google Scholar 

  23. Y. Zhang, Y. Zhu, G. Lin, R.S. Ruoff, N. Hu, D.W. Schaefer, and J.E. Mark: What factors control the mechanical properties of poly(dimethylsiloxane) reinforced with nanosheets of 3-aminopropyltriethoxysilane modified graphene oxide?Polymer 54, 3605 (2013).

    Article  CAS  Google Scholar 

  24. K. Davami, M. Shaygan, N. Kheirabi, J. Zhao, D.A. Kovalenko, M.H. Rummeli, J. Opitz, G. Cuniberti, J-S. Lee, and M. Meyyappan: Synthesis and characterization of carbon nanowalls on different substrates by radio frequency plasma enhanced chemical vapor deposition. Carbon 72, 372 (2014).

    Article  CAS  Google Scholar 

  25. J. Zhao, M. Shaygan, J. Eckert, M. Meyyappan, and M.H. Rümmeli: A growth mechanism for free-standing vertical graphene. Nano Lett. 14, 3064 (2014).

    Article  CAS  Google Scholar 

  26. Y. Zheng, N. Wei, Z. Fan, X.U. Lanqing, and Z. Huang: Mechanical properties of grafold: A demonstration of strengthened graphene. Nanotechnology 22, 405701 (2011).

    Article  Google Scholar 

  27. S.Y. Kim, W.S. Choi, J-H. Lee, and B. Hong: Substrate temperature effect on the growth of carbon nanowalls synthesized via microwave PECVD. Mater. Res. Bull. 58, 112 (2014).

    Article  CAS  Google Scholar 

  28. A. Barreiro, F. Börrnert, M.H. Rümmeli, B. Büchner, and L.M.K. Vandersypen: Graphene at high bias: Cracking, layer by layer sublimation, and fusing. Nano Lett. 12, 1873 (2012).

    Article  CAS  Google Scholar 

  29. A. Ferrari and J. Robertson: Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 61, 14095 (2000).

    Article  CAS  Google Scholar 

  30. F. Tuinstra and J.L. Koenig: Raman spectrum of graphite. J. Chem. Phys. 53, 1126 (1970).

    Article  CAS  Google Scholar 

  31. Y. Wu, B. Yang, B. Zong, H. Sun, Z. Shen, and Y. Feng: Carbon nanowalls and related materials. J. Mater. Chem. 14, 469 (2004).

    Article  CAS  Google Scholar 

  32. A. Ferrari, J. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. Novoselov, S. Roth, and A. Geim: Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006).

    Article  CAS  Google Scholar 

  33. J. Kastner, T. Pichler, H. Kuzmany, S. Curran, W. Blau, D.N. Weldon, M. Delamesiere, S. Draper, and H. Zandbergen: Resonance Raman and infrared spectroscopy of carbon nanotubes. Chem. Phys. Lett. 221, 53 (1994).

    Article  CAS  Google Scholar 

  34. S. Kurita, A. Yoshimura, H. Kawamoto, T. Uchida, K. Kojima, M. Tachibana, P. Molina-Morales, and H. Nakai: Raman spectra of carbon nanowalls grown by plasma-enhanced chemical vapor deposition. J. Appl. Phys. 97, 104320 (2005).

    Article  Google Scholar 

  35. A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M.S. Dresselhaus, and J. Kong: Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9, 30 (2009).

    Article  CAS  Google Scholar 

  36. S. Park, K-S. Lee, G. Bozoklu, W. Cai, S.T. Nguyen, and R.S. Ruoff: Graphene oxide papers modified by divalent ions—enhancing mechanical properties via chemical cross-linking. ACS Nano 2, 572 (2008).

    Article  CAS  Google Scholar 

  37. S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, and R.S. Ruoff: Graphene-based composite materials. Nature 442, 282 (2006).

    Article  CAS  Google Scholar 

  38. T. Ramanathan, A.A. Abdala, S. Stankovich, D.A. Dikin, M.H. Alonso, R.D. Piner, H.D. Adamson, H.C. Schniepp, X. Chen, S.R. Ruoff, S.T. Nguyen, I.A. Aksay, R.K.P. Homme, and L.C. Brinson: Functionalized graphene sheets for polymer nanocomposites. Nat. Nanotechnol. 3, 327 (2008).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

TEM imaging and analysis by Dr. Hessam Ghassemi and Dr. Jiong Zhao is acknowledged. We thank Dr. Jamie Ford of the Nanoscale Characterization Facility and Steven Szewczyk at the University of Pennsylvania for their help with characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keivan Davami.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davami, K., Shaygan, M. & Bargatin, I. Fabrication of vertical graphene-based nanocomposite thin films. Journal of Materials Research 30, 617–625 (2015). https://doi.org/10.1557/jmr.2015.33

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.33

Navigation