Skip to main content

Advertisement

Log in

Crystallization properties of IrQ(ppy)2 organometallic complex films

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Comparative studies between doped conducting polymers and electrochemical deposited organometallic compounds reveals the interplay between crystalline-amorphous phases with significant contributions to the internal quantum efficiency in the OLED devices. The coexistence of the amorphous and crystalline phase in the electrodeposited film is revealed by the minor micro-crystal products which are present in the amorphous phase in thin films, while the many micro-crystals are randomly distributed in the thick films. Concerning the doped conducting polymers, the level of doping induces crystalline effects as a result of the π–π stacking between molecules, due to the Forester energy transfer processes in which the transfer rate is increased with decreasing of the distances between neighboring molecules. The crystallization processes change the emission properties of the active layers both for the luminance level and all over color, ranging from yellow to red in the case of IrQ(ppy)2 compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

Similar content being viewed by others

References

  1. C.W. Tang and S.A. Van Slyke: Organic electroluminescent diodes. Appl. Phys. Lett. 51, 913 (1987).

    Article  CAS  Google Scholar 

  2. G. Wang, T.K.S. Wong, and X. Hu: Influence of thickness of electrochemically deposited hole-transport film on electroluminescent properties. Appl. Phys. A 71, 117 (2000).

    CAS  Google Scholar 

  3. D. Lincot: Electrodeposition of semiconductors. Thin Solid Films 487, 40 (2005).

    Article  CAS  Google Scholar 

  4. A. Kathalingam, M.R. Kim, Y.S. Chae, J.K. Rhee, and T. Mahalingam: Studies on electrochemically deposited ZnO thin films. J. Korean Phys. Soc. 55, 2476 (2009).

    Article  CAS  Google Scholar 

  5. P. Damlin, T. Gstergard, A. Ivaska, and H. Stubb: Light-emitting diodes of poly(p-phenylene vinylene) films electrochemically polymerized by cyclic voltammetry on IT0. Synth. Met. 102, 947 (1999).

    Article  CAS  Google Scholar 

  6. W. Chang, W. Whang, and P. Lin: Characteristics of an electropolymerized PPV and its light-emitting diode. Polymer 37, 1513 (1996).

    Article  CAS  Google Scholar 

  7. M. Li, M. Li, S. Tang, F. Shen, M. Liu, F. Li, P. Lu, D. Lu, M. Hanif, and Y. Ma: The counter anionic size effects on electrochemical, morphological, and luminescence properties of electrochemically deposited luminescent films. J. Electrochem. Soc. 155, H287 (2008).

    Article  CAS  Google Scholar 

  8. T. Ostergard, C. Kvarnstrom, H. Stubb, and A. Ivaska: Electrochemically prepared light-emitting diodes of poly(para-phenylene). Thin Solid Films 311, 58 (1997).

    Article  CAS  Google Scholar 

  9. Y. Zhu, C. Gu, S. Tang, T. Fei, X. Gu, H. Wang, Z. Wang, F. Wang, D. Lu, and Y. Ma: A new kind of peripheral carbazole substituted ruthenium(II) complexes for electrochemical deposition organic light-emitting diodes. J. Mater. Chem. 19, 3941 (2009).

    Article  CAS  Google Scholar 

  10. M. Li, S. Tang, F. Shen, M. Liu, H. Wang, P. Lu, M. Hanif, and Y. Ma: Electrochemical deposition of patterning and highly luminescent organic films for light emitting diodes. Semicond. Sci. Technol. 22, 855 (2007).

    Article  CAS  Google Scholar 

  11. M. Li, S. Tang, F. Shen, M. Liu, W. Xie, H. Xia, L. Liu, L. Tian, Z. Xie, P. Lu, M. Hanif, D. Lu, G. Cheng, and Y. Ma: Highly luminescent network films from electrochemical deposition of peripheral carbazole functionalized fluorene oligomer and their applications for light-emitting diodes. Chem. Commun. 32, 3393 (2006).

    Article  Google Scholar 

  12. M. Li, S. Tang, F. Shen, W. Xie, H. Xia, L. Liu, L. Tian, Z. Xie, M. Hanif, D. Lu, G. Cheng, and Y. Ma: Electrochemically deposited organic luminescent films: The effects of deposition parameters on morphologies and luminescent efficiency of films. J. Phys. Chem. B 110, 17784 (2006).

    Article  CAS  Google Scholar 

  13. C. Gu, S. Tang, B. Yang, S. Liu, H. Wang, S. Yang, M. Hanif, D. Lu, F. Shen, and Y. Ma: Almost completely dedoped electrochemically deposited luminescent films exhibiting excellent LED performance. Electrochim. Acta 54, 7006 (2009).

    Article  CAS  Google Scholar 

  14. C. Liu, H. Luo, G. Shi, J. Yang, Z. Chi, and Y. Ma: Luminescent network film deposited electrochemically from a carbazole functionalized AIE molecule and its application for OLEDs. J. Mater. Chem. C 3, 3752 (2015).

    Article  CAS  Google Scholar 

  15. C.J. Sun, Y. Wu, Z. Xu, B. Hu, J. Bai, J.P. Wang, and J. Shen: Enhancement of quantum efficiency of organic light emitting devices by doping magnetic nanoparticles. Appl. Phys. Lett. 90, 232110 (2007).

    Article  Google Scholar 

  16. I.C. Ciobotaru, S. Polosan, and C.C. Ciobotaru: Dual emitter IrQ(ppy)2 for OLED applications: Synthesis and spectroscopic analysis. J. Lumin. 145, 259 (2014).

    Article  CAS  Google Scholar 

  17. F. Garnier: Thin film transistors based on organic conjugated semiconductors. Chem. Phys. 282, 253 (1998).

    Article  Google Scholar 

  18. H.E. Katz, A. Dodabalapur, and Z. Bao: Oligo- and Polythiophene-based Field-effect Transistors, D. Fichou, ed. (Wiley-VCH, Weinheim, 1998).

  19. S. Hotta and K. Waragai: Organic molecular solids as thin film transistor semiconductors. Adv. Mater. 5, 896 (1993).

    Article  CAS  Google Scholar 

  20. S.F. Nelson, Y-Y. Lin, D.J. Gundlach, and T.N. Jackson: Temperature-independent transport in high-mobility pentacene transistors. Appl. Phys. Lett. 72, 1854 (1998).

    Article  CAS  Google Scholar 

  21. G. Horowitz, R. Hajlaoui, D. Fichou, and A. El Kassmi: Field-effect transistors based on short organic molecules. J. Appl. Phys. 85, 3202 (1999).

    Article  CAS  Google Scholar 

  22. R. Hajlaoui, D. Fichou, G. Horowitz, B. Nessakh, M. Constant, and F. Garnier: Organic transistors using α-octithiophene and α, ω-dihexyl-α-octithiophene: Influence of oligomer length versus molecular ordering on mobility. Adv. Mater. 9, 557 (1997).

    Article  CAS  Google Scholar 

  23. S. Polosan, I.C. Ciobotaru, and T. Tsuboi: Absorption, phosphorescence and Raman spectra of IrQ(ppy)2 organometallic compound. Mater. Chem. Phys. 162, 822–830 (2015).

    Article  CAS  Google Scholar 

  24. C. Yi, C. Yang, J. Liu, M. Xu, J. Wang, Q. Cao, and X. Gao: Red to near-infrared electrophosphorescence from an iridium complex coordinated with 2-phenylpyridine and 8-hydroxyquinoline. Inorg. Chim. Acta 360, 3493 (2007).

    Article  CAS  Google Scholar 

  25. S. Kappaun, S. Eder, S. Sax, K. Mereiter, and C. Slugovc: Organoiridium quinolinolate complexes: Synthesis, structures, thermal stabilities and photophysical properties. Eur. J. Inorg. Chem. 26, 4207 (2007).

    Article  Google Scholar 

  26. J. Rivnay, S.C.B. Mannsfeld, C.E. Miller, A. Salleo, and M.F. Toney: Determination of organic semiconductor microstructure from the molecular to device scale. Chem. Rev. 112, 5488 (2012).

    Article  CAS  Google Scholar 

  27. J. Ding, J. Gao, Q. Fu, Y. Cheng, D. Ma, and L. Wang: Highly efficient phosphorescent bis-cyclometalated iridium complexes based on quinoline ligands. Synth. Met. 155, 539 (2005).

    Article  CAS  Google Scholar 

  28. Y. You and S.Y. Park: Inter-ligand energy transfer and related emission change in the cyclometalated heteroleptic iridium complex: Facile and efficient color tuning over the whole visible range by the ancillary ligand structure. J. Am. Chem. Soc. 127, 12438 (2005).

    Article  CAS  Google Scholar 

  29. R.J. Holmes, S.R. Forrest, Y.J. Tung, R.C. Kwong, J.J. Brown, S. Garon, and M.E. Thompson: Blue organic electrophosphorescence using exothermic host–guest energy transfer. Appl. Phys. Lett. 82(15), 2422 (2003).

    Article  CAS  Google Scholar 

  30. R.E. Dale, J. Eisinger, and W.E. Blumberg: The orientational freedom of molecular probes. The orientation factor in intramolecular energy transfer. Biophys. J. 26, 161 (1979).

    Article  CAS  Google Scholar 

  31. J.V. Mersol, H. Wang, A. Gafni, and D.G. Steel: Consideration of dipole orientation angles yields accurate rate equations for energy transfer in the rapid diffusion limit. Biophys. J. 61, 1647 (1992).

    Article  CAS  Google Scholar 

  32. J. Pommerehne, H. Vestweber, W. Guss, R.F. Mahrt, H. Bassler, M. Proseh, and J. Daub: Efficient two layer leds on a polymer blend basis. Adv. Mater. 7(6), 551 (1995).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by a grant of the Romanian National Authority for Scientific Research, CNCS-UEFISCDI, Project number PN-II-ID-PCE-2011-3-0620 and Core Program of NIMP PN16-480103.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silviu Polosan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polosan, S., Ciobotaru, C.C., Ciobotaru, I.C. et al. Crystallization properties of IrQ(ppy)2 organometallic complex films. Journal of Materials Research 32, 1735–1740 (2017). https://doi.org/10.1557/jmr.2017.155

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.155

Navigation