Skip to main content
Log in

Characterization and assessment of the wideband magnetic properties of nanocrystalline alloys and soft ferrites

  • Review
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Efficient applications of magnetic cores in sensing and power electronics require low-loss and versatile soft magnetic materials, with excellent response on a wide range of frequencies. This objective is traditionally pursued with ferrite and Permalloy tape cores, available under a variety of properties. Comparable and even superior soft magnetic behavior can, however, be obtained with amorphous and nanocrystalline alloys, with the latter, in particular, combining flexible response to thermal treatments with high magnetic saturation. Broadband precise magnetic characterization of these materials, crucial to their use as inductive cores, is fully appreciated when associated with assessment by physical modeling. Comprehensive measuring approach and significant results obtained in sintered soft ferrites and nanocrystalline ribbons up to 1 GHz are highlighted in this paper. We show how broadband loss and permeability behaviors can be quantitatively interpreted in the framework of the loss separation concept, applied to eddy current and spin damping dissipation mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12
FIG. 13
FIG. 14

Similar content being viewed by others

References

  1. E.C. Snelling: Soft Ferrites: Properties and Applications, 2nd ed. (Butterworth-Heinemann, Oxford, U.K., 1989).

    Google Scholar 

  2. H. Pascard: Basic concepts for high permeability in soft ferrites. J. Phys. IV 8, 377 (1998).

    CAS  Google Scholar 

  3. M. Rossignol: Irreversibilité des processus d’aimantation et hystéresis dans les matériaux ferromagnétiques réels: Le rôle des défauts. In Magnétisme, Vol. I, E. du Trémolet de Lacheisserie, ed. (Presses Universitaires de Grenoble, Grenoble, France, 1999); p. 211.

    Google Scholar 

  4. F. Fiorillo, C. Appino, and M. Pasquale: Hysteresis in magnetic materials. In The Science of Hysteresis, Vol. III, G. Bertotti and I. Mayergoyz, eds. (Academic Press, San Diego, California, 2006); p. 1.

    Google Scholar 

  5. Y. Yoshizawa, S. Oguma, and K. Yamauchi: New Fe-based magnetic alloy composed of ultrafine grain structure. J. Appl. Phys. 64, 6044 (1988).

    CAS  Google Scholar 

  6. A. Makino, A. Inoue, and T. Masumoto: Nanocrystalline soft magnetic Fe–M–B (M = Zr, Hf, Nb) alloys produced by crystallization of amorphous phase. Mater. Trans. JIM 36, 924 (1995).

    CAS  Google Scholar 

  7. G. Herzer: Grain size dependence of coercivity and permeability in nanocrystalline ferromagnets. IEEE Trans. Magn. 26, 1397–1402 (1990).

    CAS  Google Scholar 

  8. G. Herzer: Nanocrystalline soft magnetic alloys. In Handbook of Magnetic Materials, Vol. 10, K.H.J. Buschow, ed. (Elsevier, Amsterdam, 1997); p. 415.

    Google Scholar 

  9. M.A. Willard, D.E. Laughlin, M.E. McHenry, D. Thoma, K. Sickafus, J.O. Cross, and V.G. Harris: Structure and magnetic properties of (Fe0.5Co0.5)88Zr7B4Cu1 nanocrystalline alloys. J. Appl. Phys. 84, 6773 (1998).

    CAS  Google Scholar 

  10. A. Martone, B. Dong, S. Lan, and M.A. Willard: Iron rich (Fe1−xyNixCoy)88Zr7B4Cu1 nanocrystalline magnetic materials for high temperature applications with minimal magnetostriction. AIP Adv. 8, 056126 (2018).

    Google Scholar 

  11. R. Alben, J.J. Becker, and M.C. Chi: Random anisotropy in amorphous magnets. J. Appl. Phys. 49, 1653 (1978).

    CAS  Google Scholar 

  12. H. Kronmüller and W. Fernengel: The role of internal stresses in amorphous ferromagnetic alloys. Phys. Status Solidi A 64, 493 (1981).

    Google Scholar 

  13. C. Appino and F. Fiorillo: A model for the reversible magnetization in amorphous alloys. J. Appl. Phys. 76, 5371 (1994).

    CAS  Google Scholar 

  14. H. Morita, Y. Obi, and H. Fujimori: Magnetic anisotropy of (Fe, Co, Ni)78Si10B12 alloy system. In Rapidly Quenched Metals, S. Steeb and R. Warlimont, eds. (North-Holland, Amsterdam, 1985); p. 1283.

    Google Scholar 

  15. L. Kraus, K. Závěta, O. Heczko, P. Duhaj, G. Vlasák, and J. Schneider: Magnetic anisotropy in as-quenched and stress-annealed amorphous and nanocrystalline Fe73.5Cu1Nb3Si13.5B9 alloys. J. Magn. Magn. Mater. 112, 275 (1992).

    CAS  Google Scholar 

  16. F. Alves and R. Barrué: Anisotropy and domain patterns of flash stress-annealed soft amorphous and nanocrystalline alloys. J. Mater. Eng. 254–255, 155 (2003).

    Google Scholar 

  17. Y. Suzuki, J. Haimovich, and T. Egami: Bond-orientational anisotropy in metallic glasses observed by X-ray diffraction. Phys. Rev. B 35, 2162 (1987).

    CAS  Google Scholar 

  18. H. Fukunaga, N. Furukawa, H. Tanaka, and M. Nakano: Nanostructured soft magnetic material with low loss and low permeability. J. Appl. Phys. 87, 7103 (2000).

    CAS  Google Scholar 

  19. A. Magni, O. Bottauscio, C. Beatrice, A. Caprile, E. Ferrara, and F. Fiorillo: Magnetization process in thin laminations up to 1 GHz. IEEE Trans. Magn. 48, 1363 (2012).

    CAS  Google Scholar 

  20. F. Fiorillo, G. Bertotti, C. Appino, and M. Pasquale: Soft magnetic materials. In Wiley Encyclopedia of Electrical and Electronics Engineering, M. Peterca, ed. (Wiley, Hoboken, New Jersey, 2016); p. 1.

    Google Scholar 

  21. I. Otsuka, K. Wada, Y. Maeta, T. Kadomura, and M. Yagi: Magnetic properties of Fe-based amorphous powders with high-saturation induction produced by spinning water atomization process. IEEE Trans. Magn. 44, 3891 (2008).

    CAS  Google Scholar 

  22. F. Mazaleyrat and L.K. Varga: Ferromagnetic nanocomposites. J. Magn. Magn. Mater. 215–216, 253 (2000).

    Google Scholar 

  23. H. Shokrollahi and K. Janghorban: Soft magnetic composite materials (SMCs). J. Mater. Process. Technol. 189, 1 (2007).

    CAS  Google Scholar 

  24. J. Füzer, J. Bednarčík, P. Kollár, and S. Roth: Structure and soft magnetic properties of the bulk samples prepared by compaction of the mixtures of Co-based and Fe- based powders. J. Magn. Magn. Mater. 316, e834 (2007).

    Google Scholar 

  25. L. Callegaro: Electrical Impedance: Principles, Measurement, and Applications (CRC Press, Boca Raton, FA, 2013).

    Google Scholar 

  26. I. Betancourt: Magnetization dynamics of amorphous ribbons and wires studied by inductance spectroscopy. Materials 4, 37 (2011).

    CAS  Google Scholar 

  27. J. Füzer, S. Dobák, and P. Kollár: Magnetization dynamics of FeCuNbSiB soft magnetic ribbons and derived powder cores. J. Alloy. Comp. 628, 335 (2015).

    Google Scholar 

  28. J. Petzold: Applications of nanocrystalline soft magnetic materials for modern electronic devices. Scr. Mater. 48, 895 (2003).

    CAS  Google Scholar 

  29. B. Ahmadi, F. Mazaleyrat, G. Chaplier, V. Loyau, and M. LoBue: Enhancement of medium frequency hysteresis loop measurements over a wide temperature range. IEEE Trans. Magn. 52, 6100404 (2016).

    Google Scholar 

  30. V. Loyau, M. Lo Bue, and F. Mazaleyrat: Measurement of magnetic losses by thermal method applied to power ferrites at high level of induction and frequency. Rev. Sci. Instrum. 80, 024703 (2009).

    CAS  Google Scholar 

  31. F. Fiorillo: Measurement and Characterization of Magnetic Materials (Elsevier-Academic Press, San Diego, CA, 2004); p. 388.

    Google Scholar 

  32. M. LoBue, F. Mazaleyrat, and V. Loyau: Study of magnetic losses in Mn–Zn ferrites under biased and asymmetric excitation waveforms. IEEE Trans. Magn. 46, 451 (2010).

    CAS  Google Scholar 

  33. B. Tellini, R. Giannetti, G. Robles, and S. Lizón-Martínez: New method to characterize magnetic hysteresis in soft ferrites up to high frequencies. IEEE Trans. Instrum. Meas. 55, 311 (2006).

    CAS  Google Scholar 

  34. R.B. Goldfarb and H.E. Bussey: Method for measuring complex permeability at radio frequencies. Rev. Sci. Instrum. 58, 624 (1987).

    CAS  Google Scholar 

  35. G.R. Skutt and F.C. Lee: Characterization of dimensional effects in ferrite-core magnetic devices. In PESC Record. 27th Annual IEEE Power Electronics Specialists Conference 1996, Vol. 2 (1996); p. 1435. doi: https://doi.org/10.1109/PESC.1996.548770.

    Google Scholar 

  36. A. Magni, F. Fiorillo, E. Ferrara, A. Caprile, O. Bottauscio, and C. Beatrice: Domain wall processes, rotations, and high-frequency losses in thin laminations. IEEE Trans. Magn. 48, 3796 (2012).

    CAS  Google Scholar 

  37. C. Beatrice, S. Dobák, E. Ferrara, F. Fiorillo, C. Ragusa, J. Füzer, and P. Kollár: Broadband magnetic losses of nanocrystalline ribbons and powder cores. J. Magn. Magn. Mater. 420, 317 (2016).

    CAS  Google Scholar 

  38. S. Flohrer, R. Schäfer, J. McCord, S. Roth, L. Schultz, F. Fiorillo, W. Günther, and G. Herzer: Dynamic magnetization process in nanocrystalline tape wound cores with transverse induced anisotropy. Acta Mater. 54, 4693 (2006).

    CAS  Google Scholar 

  39. D. Chumakov, J. McCord, R. Schäfer, L. Schultz, H. Vinzelberg, R. Kaltofen, and I. Mönch: Nanosecond time-scale switching of permalloy thin film elements studied by wide-field time-resolved Kerr microscopy. Phys. Rev. B 71, 014410 (2005).

    Google Scholar 

  40. D. Stoppels: Developments in soft magnetic power ferrites. J. Magn. Magn. Mater. 160, 323 (1996).

    CAS  Google Scholar 

  41. G. Bertotti: Hysteresis in Magnetism (Academic Press, San Diego, CA, 1998).

    Google Scholar 

  42. G. Bertotti: General properties of power losses in soft ferromagnetic materials. IEEE Trans. Magn. 24, 621 (1988).

    Google Scholar 

  43. G. Bertotti: Generalized Preisach model for the description of hysteresis and eddy current effects in metallic ferromagnetic materials. J. Appl. Phys. 69, 4608 (1991).

    CAS  Google Scholar 

  44. G. Bertotti, O. Bottauscio, M. Chiampi, F. Fiorillo, M. Pasquale, and M. Repetto: Power losses in magnetic laminations with hysteresis: Finite element modelling and experimental validation. J. Appl. Phys. 81, 5606 (1997).

    Google Scholar 

  45. H. Saotome and Y. Sakaki: Iron loss analysis of Mn–Zn ferrite cores. IEEE Trans. Magn. 33, 728 (1997).

    CAS  Google Scholar 

  46. T. Tsutaoka, T. Kasagi, K. Hakateyama, and M.Y. Koledintseva: Analysis of the permeability spectra of spinel ferrite composites using mixing rules. In IEEE International Symposium on Electromagnetic Compatibility (IEEE, Denver, Colorado, 2013); p. 545.

    Google Scholar 

  47. W.A. Roshen: High-frequency tunneling magnetic loss in soft ferrites. IEEE Trans. Magn. 43 (2007).

  48. M. Drofenik, A. Znidarsic, and I. Zajc: Highly resistive grain boundaries in doped MnZn ferrites for high frequency power supplies. J. Appl. Phys. 82, 333 (1997).

    CAS  Google Scholar 

  49. F. Fiorillo, C. Beatrice, O. Bottauscio, A. Manzin, and M. Chiampi: Approach to magnetic losses and their frequency dependence in Mn–Zn ferrites. Appl. Phys. Lett. 89, 122513 (2006).

    Google Scholar 

  50. J.F. Dillon, Jr. and H.E. Earl, Jr.: Domain wall motion and ferromagnetic resonance in a manganese ferrite. J. Appl. Phys. 30, 202 (1959).

    CAS  Google Scholar 

  51. J.C. Peuzin: Les matériaux doux pour l’électronique haute frequence. In Magnétisme, Vol. II, E. du Trémolet de Lacheisserie, ed. (Presses Universitaires de Grenoble, Grenoble, France, 1999); p. 155.

    Google Scholar 

  52. O. de la Barrière, C. Appino, F. Fiorillo, C. Ragusa, M. Lecrivain, L. Rocchino, H. Ben Ahmed, M. Gabsi, F. Mazaleyrat, and M. Lo Bue: Characterization and prediction of magnetic losses in soft magnetic composites under distorted induction waveforms. IEEE Trans. Magn. 49, 1318 (2013).

    Google Scholar 

  53. V. Loyau, G.Y. Wang, M. LoBue, and F. Mazaleyrat: An analysis of Mn–Zn ferrite microstructure by impedance spectroscopy, scanning transmission electron microscopy and energy dispersion spectrometry characterizations. J. Appl. Phys. 111, 053928 (2012).

    Google Scholar 

  54. F. Fiorillo, C. Beatrice, O. Bottauscio, and E. Carmi: Eddy current losses in Mn–Zn ferrites. IEEE Trans. Magn. 50, 6300109 (2014).

    Google Scholar 

  55. C. Beatrice, V. Tsakaloudi, S. Dobák, V. Zaspalis, and F. Fiorillo: Magnetic losses versus sintering process in Mn–Zn Ferrites. J. Magn. Magn. Mater. 429, 129 (2017).

    CAS  Google Scholar 

  56. K. Seemann, H. Leiste, and V. Bekker: New theoretical approach to the RF-dynamics of soft magnetic FeTaN films for CMOS components. J. Magn. Magn. Mater. 278, 200 (2004).

    CAS  Google Scholar 

  57. C. Serpico, I.D. Mayergoyz, and G. Bertotti: Analysis of eddy currents with Landau–Lifshitz equation as a constitutive relation. IEEE Trans. Magn. 37, 3546 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enzo Ferrara.

Additional information

This section of Journal of Materials Research is reserved for papers that are reviews of literature in a given area.

Appendix A

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferrara, E., Fiorillo, F., Beatrice, C. et al. Characterization and assessment of the wideband magnetic properties of nanocrystalline alloys and soft ferrites. Journal of Materials Research 33, 2120–2137 (2018). https://doi.org/10.1557/jmr.2018.275

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.275

Navigation