Skip to main content

Advertisement

Log in

Piezoelectricity in non-nitride III–V nanowires: Challenges and opportunities

  • Invited Review
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The increasing demand for portable and low-power electronics for applications in self-powered devices and sensors has spurred interest in the development of efficient piezoelectric materials, via which mechanical energy from ambient vibrations can be transformed into electrical energy for autonomous devices, or which can be used in strain-sensitive applications. Semiconducting piezoelectric materials are ideal candidates in the emerging field of piezotronics and piezophototronics, where the development of a piezopotential in response to stress/strain can be used to tune the band structure of the semiconductor and hence its electronic and/or optical properties. Furthermore, research into nanowires of these materials has intensified due to the enhancement of piezoelectric properties at the nanoscale. In this regard, nanowires of ZnO and the III-nitrides have been extensively studied, but the piezoelectric properties of non-nitride III–V semiconductor nanowires remain less-explored. Indeed, direct measurements of the piezoelectric properties of single III–V nanowires are tellingly rare due to the difficulties associated with measurements of piezoelectric properties of nanoscale objects using conventional scanning probe microscopy techniques. This review addresses the challenges related to the study of piezoelectricity in III–V nanowires and the opportunities that lie therein in terms of device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. Y. Calahorra, X. Guan, N.N. Halder, M. Smith, S. Cohen, D. Ritter, J. Penuelas, and S. Kar-Narayan: Exploring piezoelectric properties of III–V nanowires using piezo-response force microscopy. Semicond. Sci. Technol. 32, 074006 (2017).

    Article  CAS  Google Scholar 

  2. M.H. Zhao, Z.L. Wang, and S.X. Mao: Piezoelectric characterization of individual zinc oxide nanobelt probed by piezoresponse force microscope. Nano Lett. 4, 587–590 (2004).

    Article  CAS  Google Scholar 

  3. Z.L. Wang and J.H. Song: Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312, 242–246 (2006).

    Article  CAS  Google Scholar 

  4. X.D. Wang, J. Zhou, J.H. Song, J. Liu, N.S. Xu, and Z.L. Wang: Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire. Nano Lett. 6, 2768–2772 (2006).

    Article  CAS  Google Scholar 

  5. F. Bernardini, V. Fiorentini, and D. Vanderbilt: Spontaneous polarization and piezoelectric constants of III–V nitrides. Phys. Rev. B 56, 10024–10027 (1997).

    Article  Google Scholar 

  6. J. Goniakowski, F. Finocchi, and C. Noguera: Polarity of oxide surfaces and nanostructures. Rep. Prog. Phys. 71, 016501 (2008).

    Article  CAS  Google Scholar 

  7. C.Y. Nam, P. Jaroenapibal, D. Tham, D.E. Luzzi, S. Evoy, and J.E. Fischer: Diameter-dependent electromechanical properties of GaN nanowires. Nano Lett. 6, 153–158 (2006).

    Article  CAS  Google Scholar 

  8. M. Minary-Jolandan, R.A. Bernal, I. Kujanishvili, V. Parpoil, and H.D. Espinosa: Individual GaN nanowires exhibit strong piezoelectricity in 3D. Nano Lett. 12, 970–976 (2012).

    Article  CAS  Google Scholar 

  9. M.Z. Peng, Z. Li, C.H. Liu, Q. Zheng, X.Q. Shi, M. Song, Y. Zhang, S.Y. Du, J.Y. Zhai, and Z.L. Wang: High-resolution dynamic pressure sensor array based on piezo-phototronic effect tuned photoluminescence imaging. ACS Nano 9, 3143–3150 (2015).

    Article  CAS  Google Scholar 

  10. N. Jamond, P. Chretien, F. Houze, L. Lu, L. Largeau, O. Maugain, L. Travers, J.C. Harmand, F. Glas, E. Lefeuvre, M. Tchernycheva, and N. Gogneau: Piezo-generator integrating a vertical array of GaN nanowires. Nanotechnology 27, 325403 (2016).

    Article  CAS  Google Scholar 

  11. Z.L. Wang: Piezopotential gated nanowire devices: Piezotronics and piezo-phototronics. Nano Today 5, 540–552 (2010).

    Article  CAS  Google Scholar 

  12. Z.L. Wang: Piezotronic and piezophototronic effects. J. Phys. Chem. Lett. 1, 1388–1393 (2010).

    Article  CAS  Google Scholar 

  13. J. Zhou, Y.D. Gu, P. Fei, W.J. Mai, Y.F. Gao, R.S. Yang, G. Bao, and Z.L. Wang: Flexible piezotronic strain sensor. Nano Lett. 8, 3035–3040 (2008).

    Article  CAS  Google Scholar 

  14. X. Yang, L. Dong, C. Shan, J. Sun, N. Zhang, S. Wang, M. Jiang, B. Li, X. Xie, and D. Shen: Piezophototronic-effect-enhanced electrically pumped lasing. Adv. Mater. 29, 1602832 (2017).

    Article  CAS  Google Scholar 

  15. X.N. Wen, W.Z. Wu, C.F. Pan, Y.F. Hu, Q. Yang, and Z.L. Wang: Development and progress in piezotronics. Nano Energy 14, 276–295 (2015).

    Article  CAS  Google Scholar 

  16. N.P. Dasgupta, J. Sun, C. Liu, S. Brittman, S.C. Andrews, J. Lim, H. Gao, R. Yan, and P. Yang: 25th anniversary article: Semiconductor nanowires synthesis, characterization, and applications. Adv. Mater. 26, 2137–2184 (2014).

    Article  CAS  Google Scholar 

  17. X.F. Duan, Y. Huang, Y. Cui, J.F. Wang, and C.M. Lieber: Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 409, 66–69 (2001).

    Article  CAS  Google Scholar 

  18. P. Krogstrup, H.I. Jorgensen, M. Heiss, O. Demichel, J.V. Holm, M. Aagesen, J. Nygard, and A.F.I. Morral: Single-nanowire solar cells beyond the Shockley–Queisser limit. Nat. Photonics 7, 306–310 (2013).

    Article  CAS  Google Scholar 

  19. J. Singh: Electronic and Optoelectronic Properties of Semiconductor Structures (Cambridge University Press, New York, 2003).

    Book  Google Scholar 

  20. C. Wood and D. Jena: Polarization Effects in Semiconductors from Ab Initio Theory to Device Applications (Springer Science + Business Media, LLC, Boston, MA, 2008). Available at: http://www.springer.com/gb/book/9780387368313.

    Book  Google Scholar 

  21. T. Hayakawa, M. Kondo, T. Suyama, K. Takahashi, S. Yamamoto, and T. Hijikata: Reduction in threshold current-density of quantum-well lasers grown by molecular-beam epitaxy on 0.5-degrees misoriented (111)B substrates. Jpn. J. Appl. Phys., Part 2 26, L302–L305 (1987).

    Article  CAS  Google Scholar 

  22. J. Nedbal and E. Klier: Piezoelectric resonators of semiinsulating gaas. Phys. Status Solidi A 148, 329–340 (1995).

    Article  CAS  Google Scholar 

  23. E. Klier and J. Nedbal: Piezoelectric resonators of inpfe. Czech J. Phys. 44, 575–584 (1994).

    Article  CAS  Google Scholar 

  24. T. Hanada: Basic properties of ZnO, GaN, and related materials. In Oxide and Nitride Semiconductors: Processing, Properties, and Applications, Vol. 12, T. Yao and S-K. Hong, eds. (Springer, Berlin Heidelberg, 2009); pp. 1–19.

    Google Scholar 

  25. P. Lawaetz: Internal strain in zincblende and wurtzite crystals. Phys. Status Solidi B 57, 535–544 (1973).

    Article  CAS  Google Scholar 

  26. M.C.Y. Huang, K.B. Cheng, Y. Zhou, B. Pesala, C.J. Chang-Hasnain, and A.P. Pisano: Demonstration of piezoelectric actuated GaAs-based MEMS tunable VCSEL. IEEE Photonics Technol. Lett. 18, 1197–1199 (2006).

    Article  CAS  Google Scholar 

  27. K. Hjort, J. Soderkvist, and J.A. Schweitz: Gallium-arsenide as a mechanical material. J. Micromech. Microeng. 4, 1–13 (1994).

    Article  CAS  Google Scholar 

  28. J.M. Hernandez, I. Izpura, E. Calleja, and E. Munoz: Piezoelectric-induced current asymmetry in [111] InGaAs/InAlAs resonant-tunneling diodes for microwave mixing. Appl. Phys. Lett. 63, 773–775 (1993).

    Article  CAS  Google Scholar 

  29. I.H. Campbell, M.D. Joswick, D.L. Smith, and R.H. Miles: Observation of piezoelectric effects in strained resonant-tunneling structures grown on (111)B GaAs. Appl. Phys. Lett. 66, 988–990 (1995).

    Article  CAS  Google Scholar 

  30. M. Kusaka: Electrical-properties of metal piezo-electric semiconductor interface under stress. Surf. Sci. 78, 209–219 (1978).

    Article  CAS  Google Scholar 

  31. M. Kusaka, N. Hiraoka, M. Hirai, and S. Okazaki: Electrical-properties of p-type gap Schottky-barrier under stress. Surf. Sci. 91, 264–270 (1980).

    Article  CAS  Google Scholar 

  32. M.D. Gerngross, V. Sprincean, M. Leisner, J. Carstensen, H. Foll, and I. Tiginyanu: Porous InP as piezoelectric component in magnetoelectric composite sensors. ECS Trans. 35, 67–72 (2011).

    Article  CAS  Google Scholar 

  33. S. Cha, S.M. Kim, H. Kim, J. Ku, J.I. Sohn, Y.J. Park, B.G. Song, M.H. Jung, E.K. Lee, B.L. Choi, J.J. Park, Z.L. Wang, J.M. Kim, and K. Kim: Porous PVDF as effective sonic wave driven nanogenerators. Nano Lett. 11, 5142–5147 (2011).

    Article  CAS  Google Scholar 

  34. D. Cutaia, K.E. Moselund, H. Schmid, M. Borg, A. Olziersky, H. Riel, and IEEE: Complementary III–V heterojunction lateral NW tunnel FET technology on Si. In 2016 IEEE Symposium on VlSI Technology (IEEE, 2016); pp. 1–2.

  35. J.J. Gu, O. Koybasi, Y.Q. Wu, and P.D. Ye: III–V-on-nothing metal-oxide-semiconductor field-effect transistors enabled by top-down nanowire release process: Experiment and simulation. Appl. Phys. Lett. 99, 112113 (2011).

    Article  CAS  Google Scholar 

  36. S.A. Fortuna and X.L. Li: Metal-catalyzed semiconductor nanowires: A review on the control of growth directions. Semicond. Sci. Technol. 25, 024005 (2010).

    Article  CAS  Google Scholar 

  37. K.A. Dick, P. Caroff, J. Bolinsson, M.E. Messing, J. Johansson, K. Deppert, L.R. Wallenberg, and L. Samuelson: Control of III–V nanowire crystal structure by growth parameter tuning. Semicond. Sci. Technol. 25, 024009 (2010).

    Article  CAS  Google Scholar 

  38. K.A. Dick and P. Caroff: Metal-seeded growth of III–V semiconductor nanowires: Towards gold-free synthesis. Nanoscale 6, 3006–3021 (2014).

    Article  CAS  Google Scholar 

  39. J. Noborisaka, J. Motohisa, and T. Fukui: Catalyst-free growth of GaAs nanowires by selective-area metalorganic vapor-phase epitaxy. Appl. Phys. Lett. 86, 213102 (2005).

    Article  CAS  Google Scholar 

  40. C. Colombo, D. Spirkoska, M. Frimmer, G. Abstreiter, and A.F.I. Morral: Ga-assisted catalyst-free growth mechanism of GaAs nanowires by molecular beam epitaxy. Phys. Rev. B 77, 155326 (2008).

    Article  CAS  Google Scholar 

  41. D. Dalacu, A. Kam, D.G. Austing, X.H. Wu, J. Lapointe, G.C. Aers, and P.J. Poole: Selective-area vapour–liquid–solid growth of InP nanowires. Nanotechnology 20, 395602 (2009).

    Article  CAS  Google Scholar 

  42. A. Kelrich, Y. Calahorra, Y. Greenberg, A. Gavrilov, S. Cohen, and D. Ritter: Shadowing and mask opening effects during selective-area vapor–liquid–solid growth of InP nanowires by metalorganic molecular beam epitaxy. Nanotechnology 24, 475302 (2013).

    Article  CAS  Google Scholar 

  43. P. Mohan, J. Motohisa, and T. Fukui: Realization of conductive InAs nanotubes based on lattice-mismatched InP/InAs core–shell nanowires. Appl. Phys. Lett. 88, 013110 (2006).

    Article  CAS  Google Scholar 

  44. S. Lehmann, J. Wallentin, D. Jacobsson, K. Deppert, and K.A. Dick: A general approach for sharp crystal phase switching in InAs, GaAs, InP, and GaP nanowires. Using only group V flow. Nano Lett. 13, 4099–4105 (2013).

    Article  CAS  Google Scholar 

  45. A. Kelrich, O. Sorias, Y. Calahorra, Y. Kauffmann, R. Gladstone, S. Cohen, M. Orenstein, and D. Ritter: InP nanoflag growth from a nanowire template by in situ catalyst manipulation. Nano Lett. 16, 2837–2844 (2016).

    Article  CAS  Google Scholar 

  46. Y. Calahorra, A. Kelrich, S. Cohen, and D. Ritter: Catalyst shape engineering for anisotropic cross-sectioned nanowire growth. Sci. Rep. 7, 40891 (2017).

    Article  CAS  Google Scholar 

  47. H.J. Joyce, J. Wong-Leung, Q. Gao, H.H. Tan, and C. Jagadish: Phase perfection in zinc blende and wurtzite III–V nanowires using basic growth parameters. Nano Lett. 10, 908–915 (2010).

    Article  CAS  Google Scholar 

  48. A. Kelrich, V.G. Dubrovskii, Y. Calahorra, S. Cohen, and D. Ritter: Control of morphology and crystal purity of InP nanowires by variation of phosphine flux during selective area MOMBE. Nanotechnology 26, 085303 (2015).

    Article  CAS  Google Scholar 

  49. D. Spirkoska, J. Arbiol, A. Gustafsson, S. Conesa-Boj, F. Glas, I. Zardo, M. Heigoldt, M.H. Gass, A.L. Bleloch, S. Estrade, M. Kaniber, J. Rossler, F. Peiro, J.R. Morante, G. Abstreiter, L. Samuelson, and A.F.I. Morral: Structural and optical properties of high quality zinc-blende/wurtzite GaAs nanowire heterostructures. Phys. Rev. B 80, 245325 (2009).

    Article  CAS  Google Scholar 

  50. S.O.R. Moheimani, A.J. Fleming, and SpringerLink (Online service): Piezoelectric transducers for vibration control and damping. In Advances in Industrial Control (Springer-Verlag London Limited, London, 2006); pp. 9–35. Available at: http://www.springer.com/gb/book/9781846283314.

    Google Scholar 

  51. F. Boxberg, N. Sondergaard, and H.Q. Xu: Elastic and piezoelectric properties of zincblende and wurtzite crystalline nanowire heterostructures. Adv. Mater. 24, 4692–4706 (2012).

    Article  CAS  Google Scholar 

  52. H.T. Mengistu and A. Garcia-Cristobal: The generalized plane piezoelectric problem: Theoretical formulation and application to heterostructure nanowires. Int. J. Solid Struct. 100, 257–269 (2016).

    Article  CAS  Google Scholar 

  53. S.H. Park and S.L. Chuang: Comparison of zinc-blende and wurtzite GaN semiconductors with spontaneous polarization and piezoelectric field effects. J. Appl. Phys. 87, 353–364 (2000).

    Article  CAS  Google Scholar 

  54. H.Y.S. Al-Zahrani, J. Pal, M.A. Migliorato, G. Tse, and D.P. Yu: Piezoelectric field enhancement in III–V core–shell nanowires. Nano Energy 14, 382–391 (2015).

    Article  CAS  Google Scholar 

  55. D. Berlincourt, L.R. Shiozawa, and H. Jaffe: Electroelastic properties of sulfides, selenides, and tellurides of zinc and cadmium. Phys. Rev. 129, 1009 (1963).

    Article  CAS  Google Scholar 

  56. S.Q. Wang and H.Q. Ye: First-principles study on elastic properties and phase stability of III–V compounds. Phys. Status Solidi B 240, 45–54 (2003).

    Article  CAS  Google Scholar 

  57. R.X. Yan, D. Gargas, and P.D. Yang: Nanowire photonics. Nat. Photonics 3, 569–576 (2009).

    Article  CAS  Google Scholar 

  58. Y. Calahorra, O. Shtempluck, V. Kotchetkov, and Y.E. Yaish: Young’s modulus, residual stress, and crystal orientation of doubly clamped silicon nanowire beams. Nano Lett. 15, 2945–2950 (2015).

    Article  CAS  Google Scholar 

  59. A. Heidelberg, L.T. Ngo, B. Wu, M.A. Phillips, S. Sharma, T.I. Kamins, J.E. Sader, and J.J. Boland: A generalized description of the elastic properties of nanowires. Nano Lett. 6, 1101–1106 (2006).

    Article  CAS  Google Scholar 

  60. M. Dunaevskiy, P. Geydt, E. Lahderanta, P. Alekseev, T. Haggren, J.P. Kakko, H. Jiang, and H. Lipsanen: Young’s modulus of wurtzite and zinc blende InP nanowires. Nano Lett. 17, 3441–3446 (2017).

    Article  CAS  Google Scholar 

  61. P.A. Alekseev, M.S. Dunaevskii, A.V. Stovpyaga, M. Lepsa, and A.N. Titkov: Measurement of Young’s modulus of GaAs nanowires growing obliquely on a substrate. Semiconductors 46, 641–646 (2012).

    Article  CAS  Google Scholar 

  62. Y.B. Wang, L.F. Wang, H.J. Joyce, Q.A. Gao, X.Z. Liao, Y.W. Mai, H.H. Tan, J. Zou, S.P. Ringer, H.J. Gao, and C. Jagadish: Super deformability and Young’s modulus of GaAs nanowires. Adv. Mater. 23, 1356–1360 (2011).

    Article  CAS  Google Scholar 

  63. B. Chen, Q. Gao, Y. Wang, X. Liao, Y.W. Mai, H.H. Tan, J. Zou, S.P. Ringer, and C. Jagadish: Anelastic behavior in GaAs semiconductor nanowires. Nano Lett. 13, 3169–3172 (2013).

    Article  CAS  Google Scholar 

  64. Y.J. Chen, T. Burgess, X.H. An, Y.W. Mai, H.H. Tan, J. Zou, S.P. Ringer, C. Jagadish, and X.Z. Liao: Effect of a high density of stacking faults on the Young’s modulus of GaAs nanowires. Nano Lett. 16, 1911–1916 (2016).

    Article  CAS  Google Scholar 

  65. P.A. Mante, S. Lehmann, N. Anttu, K.A. Dick, and A. Yartsev: Nondestructive complete mechanical characterization of zinc blende and wurtzite GaAs nanowires using time-resolved pump-probe spectroscopy. Nano Lett. 16, 4792–4798 (2016).

    Article  CAS  Google Scholar 

  66. R.M. Martin: Relation between elastic tensors of wurtzite and zincblende structure materials. Phys. Rev. B 6, 4546–4553 (1972).

    Article  CAS  Google Scholar 

  67. X. Li, X.L. Wei, T.T. Xu, Z.Y. Ning, J.P. Shu, X.Y. Wang, D. Pan, J.H. Zhao, T. Yang, and Q. Chen: Mechanical properties of individual InAs nanowires studied by tensile tests. Appl. Phys. Lett. 104, 103110 (2014).

    Article  CAS  Google Scholar 

  68. R. Erdelyi, M.H. Madsen, G. Safran, Z. Hajnal, I.E. Lukacs, G. Fulop, S. Csonka, J. Nygard, and J. Volk: In situ mechanical characterization of wurtzite InAs nanowires. Solid State Commun. 152, 1829–1833 (2012).

    Article  CAS  Google Scholar 

  69. Y.M. Niquet and D.C. Mojica: Quantum dots and tunnel barriers in InAsOInP nanowire heterostructures: Electronic and optical properties. Phys. Rev. B 77, 115316 (2008).

    Article  CAS  Google Scholar 

  70. P.E. Faria and G.M. Sipahi: Band structure calculations of InP wurtzite/zinc-blende quantum wells. J. Appl. Phys. 112, 103716 (2012).

    Article  CAS  Google Scholar 

  71. M. Holm, M.E. Pistol, and C. Pryor: Calculations of the electronic structure of strained InAs quantum dots in InP. J. Appl. Phys. 92, 932–936 (2002).

    Article  CAS  Google Scholar 

  72. G. Bester and A. Zunger: Cylindrically shaped zinc-blende semiconductor quantum dots do not have cylindrical symmetry: Atomistic symmetry, atomic relaxation, and piezoelectric effects. Phys. Rev. B 71, 045318 (2005).

    Article  CAS  Google Scholar 

  73. M. Hocevar, L.T.T. Giang, R. Songmuang, M. den Hertog, L. Besombes, J. Bleuse, Y.M. Niquet, and N.T. Pelekanos: Residual strain and piezoelectric effects in passivated GaAs/AlGaAs core-shell nanowires. Appl. Phys. Lett. 102, 191103 (2013).

    Article  CAS  Google Scholar 

  74. M. Zervos and L.F. Feiner: Electronic structure of piezoelectric double-barrier InAs/InP/InAs/InP/InAs(111) nanowires. J. Appl. Phys. 95, 281–291 (2004).

    Article  CAS  Google Scholar 

  75. R. Anufriev, N. Chauvin, H. Khmissi, K. Naji, G. Patriarche, M. Gendry, and C. Bru-Chevallier: Piezoelectric effect in InAs/InP quantum rod nanowires grown on silicon substrate. Appl. Phys. Lett. 104, 183101 (2014).

    Article  CAS  Google Scholar 

  76. K. Moratis, S.L. Tan, S. Germanis, C. Katsidis, M. Androulidaki, K. Tsagaraki, Z. Hatzopoulos, F. Donatini, J. Cibert, Y.M. Niquet, H. Mariette, and N. Pelekanos: Strained GaAs/InGaAs core–shell nanowires for photovoltaic applications. Nanoscale Res. Lett. 11, 1–7 (2016).

    Article  CAS  Google Scholar 

  77. I.J. Chen, S. Lehmann, M. Nilsson, P. Kivisaari, H. Linke, K.A. Dick, and C. Thelandert: Conduction band offset and polarization effects in InAs nanowire polytype junctions. Nano Lett. 17, 902–908 (2017).

    Article  CAS  Google Scholar 

  78. N. Chauvin, A. Mavel, G. Patriarche, B. Masenelli, M. Gendry, and D. Machon: Pressure-dependent photoluminescence study of wurtzite InP nanowires. Nano Lett. 16, 2926–2930 (2016).

    Article  CAS  Google Scholar 

  79. X. Li, X.L. Wei, T.T. Xu, D. Pan, J.H. Zhao, and Q. Chen: Remarkable and crystal-structure-dependent piezoelectric and piezoresistive effects of InAs nanowires. Adv. Mater. 27, 2852 (2015).

    Article  CAS  Google Scholar 

  80. K. Zheng, Z. Zhang, Y.B. Hu, P.P. Chen, W. Lu, J. Drennan, X.D. Han, and J. Zou: Orientation dependence of electromechanical characteristics of defect-free InAs nanowires. Nano Lett. 16, 1787–1793 (2016).

    Article  CAS  Google Scholar 

  81. J.H. Lee, M.W. Pin, S.J. Choi, M.H. Jo, J.C. Shin, S.G. Hong, S.M. Lee, B. Cho, S.J. Ahn, N.W. Song, S.H. Yi, and Y.H. Kim: Electromechanical properties and spontaneous response of the current in InAsP nanowires. Nano Lett. 16, 6738–6745 (2016).

    Article  CAS  Google Scholar 

  82. G. Signorello, S. Sant, N. Bologna, M. Schraff, U. Drechsler, H. Schmid, S. Wirths, M.D. Rossell, A. Schenk, and H. Riel: Manipulating surface states of III–V nanowires with uniaxial stress. Nano Lett. 17, 2816–2824 (2017).

    Article  CAS  Google Scholar 

  83. G. Signorello, E. Lortscher, P.A. Khomyakov, S. Karg, D.L. Dheeraj, B. Gotsmann, H. Weman, and H. Riel: Inducing a direct-to-pseudodirect bandgap transition in wurtzite GaAs nanowires with uniaxial stress. Nat. Commun. 5, 3655 (2014).

    Article  CAS  Google Scholar 

  84. G. Signorello, S. Karg, M.T. Bjork, B. Gotsmann, and H. Riel: Tuning the light emission from GaAs nanowires over 290 meV with uniaxial strain. Nano Lett. 13, 917–924 (2013).

    Article  CAS  Google Scholar 

  85. I.P. Soshnikov, D.E. Afanas’ev, V.A. Petrov, G.E. Cirlin, A.D. Bouravlev, Y.B. Samsonenko, A. Khrebtov, E.M. Tanklevskaya, and I.A. Seleznev: Piezoelectric effect in GaAs nanowires. Semiconductors 45, 1082–1084 (2011).

    Article  CAS  Google Scholar 

  86. V. Lysak, I.P. Soshnikov, E. Lahderanta, and G.E. Cirlin: Piezoelectric effect in GaAs nanowires: Experiment and theory. Phys. Status Solidi Rapid Res. Lett. 10, 172–175 (2016).

    Article  CAS  Google Scholar 

  87. V.V. Lysak, I.P. Soshnikov, E. Lahderanta, and G.E. Cirlin: Piezoelectric effect in wurtzite GaAs nanowires: Growth, characterization, and electromechanical 3D modeling. Phys. Status Solidi A 213, 3014–3019 (2016).

    Article  CAS  Google Scholar 

  88. Y. Calahorra, M. Smith, A. Datta, H. Benisty, and S. Kar-Narayan: Mapping piezoelectric response in nanomaterials using a dedicated non destructive scanning probe technique. Nanoscale 9, 19290–19297 (2017).

    Article  CAS  Google Scholar 

  89. A. Gruverman and S.V. Kalinin: Piezoresponse force microscopy and recent advances in nanoscale studies of ferroelectrics. J. Mater. Sci. 41, 107–116 (2006).

    Article  CAS  Google Scholar 

  90. N. Tiwary, R. Sarkar, V.R. Rao, A. Laha, and IEEE: Piezoresponse force microscopy (PFM) characterization of GaN nanowires grown by plasma assisted molecular beam epitaxy (PA-MBE). In 2016 Joint IEEE International Symposium on the Applications of Ferroelectrics, European Conference on Application of Polar Dielectrics, and Piezoelectric Force Microscopy Workshop (Isaf/Ecapd/Pfm) (IEEE, 2016); pp. 1–4.

  91. R. Agrawal and H.D. Espinosa: Giant piezoelectric size effects in zinc oxide and gallium nitride nanowires. A first principles investigation. Nano Lett. 11, 786–790 (2011).

    Article  CAS  Google Scholar 

  92. M.T. Hoang, J. Yvonnet, A. Mitrushchenkov, and G. Chambaud: First-principles based multiscale model of piezoelectric nanowires with surface effects. J. Appl. Phys. 113, 014309 (2013).

    Article  CAS  Google Scholar 

  93. I.L. Guy, S. Muensit, and E.M. Goldys: Extensional piezoelectric coefficients of gallium nitride and aluminum nitride. Appl. Phys. Lett. 75, 4133–4135 (1999).

    Article  CAS  Google Scholar 

  94. P.H. Wang, H.J. Du, S.N. Shen, M.S. Zhang, and B. Liu: Preparation and characterization of ZnO microcantilever for nanoactuation. Nanoscale Res. Lett. 7, 1–5 (2012).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENT

S.K-N and Y.C are grateful for financial support from the European Research Council through an ERC Starting Grant, NANOGEN (Grant No. ERC-2014-STG-639526).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sohini Kar-Narayan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calahorra, Y., Kar-Narayan, S. Piezoelectricity in non-nitride III–V nanowires: Challenges and opportunities. Journal of Materials Research 33, 611–624 (2018). https://doi.org/10.1557/jmr.2018.29

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.29

Navigation