Skip to main content
Log in

Hexagonal close-packed high-entropy alloy formation under extreme processing conditions

  • Invited Paper
  • Nanocrystalline High Entropy Materials: Processing Challenges and Properties
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We assess the validity of criteria based on size mismatch and thermodynamics in predicting the stability of the rare class of high-entropy alloys (HEAs) that form in the hexagonal close-packed crystal structure. We focus on nanocrystalline HEA particles composed predominantly of Mo, Tc, Ru, Rh, and Pd along with Ag, Cd, and Te, which are produced in uranium dioxide fuel under the extreme conditions of nuclear reactor operation. The constituent elements are fission products that aggregate under the combined effects of irradiation and elevated temperature as high as 1200 °C. We present the recent results on alloy nanoparticle formation in irradiated ceria, which was selected as a surrogate for uranium dioxide, to show that radiation-enhanced diffusion plays an important role in the process. This work sheds light on the initial stages of alloy nanoparticle formation from a uniform dispersion of individual metals. The remarkable chemical durability of such multiple principal element alloys presents a solution, namely, an alloy waste form, to the challenge of immobilizing Tc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang: Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299 (2004).

    Article  CAS  Google Scholar 

  2. B. Cantor, I. Chang, P. Knight, and A. Vincent: Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng., A 375, 213 (2004).

    Article  CAS  Google Scholar 

  3. L.J. Santodonato, Y. Zhang, M. Feygenson, C.M. Parish, M.C. Gao, R.J. Weber, J.C. Neuefeind, Z. Tang, and P.K. Liaw: Deviation from high-entropy configurations in the atomic distributions of a multi-principal-element alloy. Nat. Commun. 6, 5964 (2015).

    Article  CAS  Google Scholar 

  4. D. Ma, B. Grabowski, F. Körmann, J. Neugebauer, and D. Raabe: Ab initio thermodynamics of the CoCrFeMnNi high entropy alloy: Importance of entropy contributions beyond the configurational one. Acta Mater. 100, 90 (2015).

    Article  CAS  Google Scholar 

  5. A. Melnick and V. Soolshenko: Thermodynamic design of high-entropy refractory alloys. J. Alloys Compd. 694, 223 (2017).

    Article  CAS  Google Scholar 

  6. D. Miracle and O. Senkov: A critical review of high entropy alloys and related concepts. Acta Mater. 122, 448 (2017).

    Article  CAS  Google Scholar 

  7. M. Widom: Modeling the structure and thermodynamics of high-entropy alloys. J. Mater. Res. 33, 2881–2898 (2018).

    Article  CAS  Google Scholar 

  8. Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, and Z.P. Lu: Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 61, 1 (2014).

    Article  CAS  Google Scholar 

  9. C.G. Schön, T. Duong, Y. Wang, and R. Arróyave: Probing the entropy hypothesis in highly concentrated alloys. Acta Mater. 148, 263 (2018).

    Article  CAS  Google Scholar 

  10. E. Pickering and N.G. Jones: High-entropy alloys: A critical assessment of their founding principles and future prospects. Int. Mater. Rev. 61, 183 (2016).

    Article  CAS  Google Scholar 

  11. F. Otto, A. Dlouhý, C. Somsen, H. Bei, G. Eggeler, and E.P. George: The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Mater. 61, 5743 (2013).

    Article  CAS  Google Scholar 

  12. S. Middleburgh, D. King, and G. Lumpkin: Atomic scale modelling of hexagonal structured metallic fission product alloys. R. Soc. Open Sci. 2, 140292 (2015).

    Article  CAS  Google Scholar 

  13. M.C. Gao, C. Zhang, P. Gao, F. Zhang, L. Ouyang, M. Widom, and J. Hawk: Thermodynamics of concentrated solid solution alloys. Curr. Opin. Solid State Mater. Sci. 21, 238–251 (2017).

    Article  CAS  Google Scholar 

  14. O. Senkov, J. Miller, D. Miracle, and C. Woodward: Accelerated exploration of multi-principal element alloys with solid solution phases. Nat. Commun. 6, 6529 (2015).

    Article  CAS  Google Scholar 

  15. S. Gorsse, D.B. Miracle, and O.N. Senkov: Mapping the world of complex concentrated alloys. Acta Mater. 135, 177 (2017).

    Article  CAS  Google Scholar 

  16. B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, and R.O. Ritchie: A fracture-resistant high-entropy alloy for cryogenic applications. Science 345, 1153 (2014).

    Article  CAS  Google Scholar 

  17. Z. Tang, L. Huang, W. He, and P.K. Liaw: Alloying and processing effects on the aqueous corrosion behavior of high-entropy alloys. Entropy 16, 895 (2014).

    Article  CAS  Google Scholar 

  18. M-H. Chuang, M-H. Tsai, W-R. Wang, S-J. Lin, and J-W. Yeh: Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys. Acta Mater. 59, 6308 (2011).

    Article  CAS  Google Scholar 

  19. M.A. Hemphill, T. Yuan, G. Wang, J. Yeh, C. Tsai, A. Chuang, and P. Liaw: Fatigue behavior of Al0.5CoCrCuFeNi high entropy alloys. Acta Mater. 60, 5723 (2012).

    Article  CAS  Google Scholar 

  20. K.V. Yusenko, S. Riva, P.A. Carvalho, M.V. Yusenko, S. Arnaboldi, A.S. Sukhikh, M. Hanfland, and S.A. Gromilov: First hexagonal close packed high-entropy alloy with outstanding stability under extreme conditions and electrocatalytic activity for methanol oxidation. Scr. Mater. 138, 22 (2017).

    Article  CAS  Google Scholar 

  21. M.C. Gao, B. Zhang, S. Guo, J. Qiao, and J. Hawk: High-entropy alloys in hexagonal close-packed structure. Metall. Mater. Trans. A 47, 3322 (2016).

    Article  CAS  Google Scholar 

  22. M. Feuerbacher, M. Heidelmann, and C. Thomas: Hexagonal high-entropy alloys. Mater. Res. Lett. 3, 1 (2015).

    Article  CAS  Google Scholar 

  23. M.C. Gao and D.E. Alman: Searching for next single-phase high-entropy alloy compositions. Entropy 15, 4504 (2013).

    Article  CAS  Google Scholar 

  24. A. Takeuchi, K. Amiya, T. Wada, K. Yubuta, and W. Zhang: High-entropy alloys with a hexagonal close-packed structure designed by equi-atomic alloy strategy and binary phase diagrams. JOM 66, 1984 (2014).

    Article  CAS  Google Scholar 

  25. Y. Zhao, J. Qiao, S. Ma, M. Gao, H. Yang, M. Chen, and Y. Zhang: A hexagonal close-packed high-entropy alloy: The effect of entropy. Mater. Des. 96, 10 (2016).

    Article  CAS  Google Scholar 

  26. K.M. Youssef, A.J. Zaddach, C. Niu, D.L. Irving, and C.C. Koch: A novel low-density, high-hardness, high-entropy alloy with close-packed single-phase nanocrystalline structures. Mater. Res. Lett. 3, 95 (2015).

    Article  CAS  Google Scholar 

  27. C.L. Tracy, S. Park, D.R. Rittman, S.J. Zinkle, H. Bei, M. Lang, R.C. Ewing, and W.L. Mao: High pressure synthesis of a hexagonal close-packed phase of the high-entropy alloy CrMnFeCoNi. Nat. Commun. 8, 15634 (2017).

    Article  CAS  Google Scholar 

  28. F. Zhang, Y. Wu, H. Lou, Z. Zeng, V.B. Prakapenka, E. Greenberg, Y. Ren, J. Yan, J.S. Okasinski, X. Liu, Y. Liu, Q. Zeng, and Z. Lu: Polymorphism in a high-entropy alloy. Nat. Commun. 8, 15687 (2017).

    Article  CAS  Google Scholar 

  29. J. Moon, Y. Qi, E. Tabachnikova, Y. Estrin, W-M. Choi, S-H. Joo, B-J. Lee, A. Podolskiy, M. Tikhonovsky, and H.S. Kim: Microstructure and mechanical properties of high-entropy alloy Co20Cr26Fe20Mn20Ni14 processed by high-pressure torsion at 77 K and 300 K. Sci. Rep. 8, 11074 (2018).

    Article  CAS  Google Scholar 

  30. S. Utsunomiya and R.C. Ewing: The fate of the epsilon phase (Mo—Ru—Pd—Tc—Rh) in the UO2 of the Oklo natural fission reactors. Radiochim. Acta 94, 749 (2006).

    Article  CAS  Google Scholar 

  31. J. Bramman, R. Sharpe, D. Thom, and G. Yates: Metallic fission-product inclusions in irradiated oxide fuels. J. Nucl. Mater. 25, 201 (1968).

    Article  Google Scholar 

  32. D. O’Boyle, F. Brown, and A. Dwtght: Analysis of fission product ingots formed in uranium-plutonium oxide irradiated in EBR-II. J. Nucl. Mater. 35, 257 (1970).

    Article  Google Scholar 

  33. H. Kleykamp: The chemical state of the fission products in oxide fuels. J. Nucl. Mater. 131, 221 (1985).

    Article  CAS  Google Scholar 

  34. H. Kleykamp, J. Paschoal, R. Pejsa, and F. Thümmler: Composition and structure of fission product precipitates in irradiated oxide fuels: Correlation with phase studies in the Mo—Ru—Rh—Pd and BaO—UO2–ZrO2–MoO2 systems. J. Nucl. Mater. 130, 426 (1985).

    Article  CAS  Google Scholar 

  35. H. Kleykamp: Constitution and thermodynamics of the Mo—Ru, Mo—Pd, Ru—Pd, and Mo—Ru—Pd systems. J. Nucl. Mater. 167, 49 (1989).

    Article  Google Scholar 

  36. K. Naito, T. Tsuji, T. Matsui, and A. Date: Chemical state, phases and vapor pressures of fission-produced noble metals in oxide fuel. J. Nucl. Mater. 154, 3 (1988).

    Article  CAS  Google Scholar 

  37. E.C. Buck, E.J. Mausolf, B.K. McNamara, C.Z. Soderquist, and J.M. Schwantes: Nanostructure of metallic particles in light water reactor used nuclear fuel. J. Nucl. Mater. 461, 236 (2015).

    Article  CAS  Google Scholar 

  38. T. Yang, C. Li, S.J. Zinkle, S. Zhao, H. Bei, and Y. Zhang: Irradiation responses and defect behavior of single-phase concentrated solid solution alloys. J. Mater. Res. 33, 3077 (2018).

    Article  CAS  Google Scholar 

  39. D. Cui, V.V. Rondinella, J.A. Fortner, A.J. Kropf, L. Eriksson, D.J. Wronkiewicz, and K. Spahiu: Characterization of alloy particles extracted from spent nuclear fuel. J. Nucl. Mater. 420, 328 (2012).

    Article  CAS  Google Scholar 

  40. P.G. Lucuta, R.A. Verrall, H. Matzke, and B.J. Palmer: Microstructural features of SIMFUEL—Simulated high-burnup UO2-based nuclear fuel. J. Nucl. Mater. 178, 48 (1991).

    Article  CAS  Google Scholar 

  41. J.V. Crum, D. Strachan, A. Rohatgi, and M. Zumhoff: Epsilon metal waste form for immobilization of noble metals from used nuclear fuel. J. Nucl. Mater. 441, 103 (2013).

    Article  CAS  Google Scholar 

  42. D. Cui, J. Low, C.J. Sjoestedt, and K. Spahiu: On Mo—Ru—Tc—Pd—Rh—Te alloy particles extracted from spent fuel and their leaching behavior under Ar and H2 atmospheres. Radiochim. Acta 92, 551 (2004).

    Article  CAS  Google Scholar 

  43. C.A. Yablinsky, R. Devanathan, J. Pakarinen, J. Gan, D. Severin, C. Trautmann, and T.R. Allen: Characterization of swift heavy ion irradiation damage in ceria. J. Mater. Res. 30, 1473 (2015).

    Article  CAS  Google Scholar 

  44. R. Devanathan: Molecular dynamics simulation of fission fragment damage in nuclear fuel and surrogate material. MRS Adv. 2, 1225 (2017).

    Article  CAS  Google Scholar 

  45. W. Jiang, M.A. Conroy, K. Kruska, N.R. Overman, T.C. Droubay, J. Gigax, L. Shao, and R. Devanathan: Nanoparticle precipitation in irradiated and annealed ceria doped with metals for emulation of spent fuels. J. Phys. Chem. C 121, 22465 (2017).

    Article  CAS  Google Scholar 

  46. M.C. Gao, P. Gao, J.A. Hawk, L. Ouyang, D.E. Alman, and M. Widom: Computational modeling of high-entropy alloys: Structures, thermodynamics and elasticity. J. Mater. Res. 32, 3627 (2017).

    Article  CAS  Google Scholar 

  47. S. Guo, C. Ng, J. Lu, and C. Liu: Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. J. Appl. Phys. 109, 103505 (2011).

    Article  CAS  Google Scholar 

  48. D.J.M. King, P.A. Burr, E.G. Obbard, and S.C. Middleburgh: DFT study of the hexagonal high-entropy alloy fission product system. J. Nucl. Mater. 488, 70 (2017).

    Article  CAS  Google Scholar 

  49. J.L. Huang, Z. Li, H.H. Duan, Z.Y. Cheng, Y.D. Li, J. Zhu, and R. Yu: Formation of hexagonal-close packed (HCP) rhodium as a size effect. J. Am. Chem. Soc. 139, 575 (2017).

    Article  CAS  Google Scholar 

  50. R.J. Serne, J.V. Crum, B.J. Riley, and T.G. Levitskaia: Options for the Separation and Immobilization of Technetium, PNNL-25834 (Pacific Northwest National laboratory, Richland, WA, 2016).

    Book  Google Scholar 

  51. O. Senkov and D. Miracle: A new thermodynamic parameter to predict formation of solid solution or intermetallic phases in high entropy alloys. J. Alloys Compd. 658, 603 (2016).

    Article  CAS  Google Scholar 

  52. D.J.M. King and A.J. McGregor: Alloy Search and Predict (2015). Available at: http://www.alloyasap.com.

  53. A. Takeuchi and A. Inoue: Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater. Trans. 46, 2817 (2005).

    Article  CAS  Google Scholar 

  54. X. Yang and Y. Zhang: Prediction of high-entropy stabilized solid-solution in multi-component alloys. Mater. Chem. Phys. 132, 233 (2012).

    Article  CAS  Google Scholar 

  55. D. King, S. Middleburgh, A. McGregor, and M. Cortie: Predicting the formation and stability of single phase high-entropy alloys. Acta Mater. 104, 172 (2016).

    Article  CAS  Google Scholar 

  56. M.C. Troparevsky, J.R. Morris, P.R. Kent, A.R. Lupini, and G.M. Stocks: Criteria for predicting the formation of single-phase high-entropy alloys. Phys. Rev. X 5, 011041 (2015).

    Google Scholar 

  57. T.B. Massalski: Comments concerning some features of phase diagrams and phase transformations. Mater. Trans. 51, 583 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank D.J.M. King for thoughtful suggestions about the thermodynamics of MPEAs. This work was supported by the Nuclear Process Science Initiative (NPSI) under the Laboratory Directed Research and Development (LDRD) Program at the Pacific Northwest National Laboratory, a multiprogram national laboratory operated by Battelle for the U.S. Department of Energy under Contract DE-AC05-76RL01830. Ion irradiation was performed at Texas A&M University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram Devanathan.

Additional information

This work was performed while M.A. Conroy was at Pacific Northwest National Laboratory.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devanathan, R., Jiang, W., Kruska, K. et al. Hexagonal close-packed high-entropy alloy formation under extreme processing conditions. Journal of Materials Research 34, 709–719 (2019). https://doi.org/10.1557/jmr.2018.438

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.438

Navigation