Skip to main content
Log in

Understanding the driving forces for crystal growth by oriented attachment through theory and simulations

  • Invited Feature Paper - Review
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Oriented attachment (OA) is a particle-based crystallization pathway in which nanocrystals self-assemble in solution and attach along certain crystallographic direction often forming highly organized three-dimensional crystal morphologies. The pathway offers the potential for a general synthetic approach of hierarchical nanomaterials, in which multiscale structural control is achieved by manipulating the interfacial nucleation and self-assembly of nanoscale building blocks. Here, the current status of the development of a predictive theoretical framework for modeling crystallization by OA is reviewed. A particular emphasis is made on recent developments in understanding the microscopic details of solvent-mediated forces that drive nanocrystal reorientation and alignment for face-selective attachment. Interactions arising from the correlated solvent dynamics at particle interfaces emerge as the main sources of long-range face-specific interparticle forces and short-range torque for fine particle alignment into lattice matching configuration. These findings shift the focus of the experimental and theoretical research of OA onto the detailed study of interfacial solvent structure and dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. D.S. Li, M.H. Nielsen, J.R.I. Lee, C. Frandsen, J.F. Banfield, and J.J. De Yoreo: Direction-specific interactions control crystal growth by oriented attachment. Science 336, 1014–1018 (2012).

    CAS  Google Scholar 

  2. M.H. Nielsen, D.S. Li, H.Z. Zhang, S. Aloni, T.Y.J. Han, C. Frandsen, J. Seto, J.F. Banfield, H. Colfen, and J.J. De Yoreo: Investigating processes of nanocrystal formation and transformation via liquid cell TEM. Microsc. Microanal. 20, 425–436 (2014).

    CAS  Google Scholar 

  3. J.J. De Yoreo, P.U.P.A. Gilbert, N.A.J.M. Sommerdijk, R.L. Penn, S. Whitelam, D. Joester, H.Z. Zhang, J.D. Rimer, A. Navrotsky, J.F. Banfield, A.F. Wallace, F.M. Michel, F.C. Meldrum, H. Colfen, and P.M. Dove: Crystallization by particle attachment in synthetic, biogenic, and geologic environments. Science 349, 6760 (2015).

    Google Scholar 

  4. V.K. Ivanov, P.P. Fedorov, A.Y. Baranchikov, and V.V. Osiko: Oriented attachment of particles: 100 years of investigations of non-classical crystal growth. Russ. Chem. Rev. 83, 1204–1222 (2014).

    CAS  Google Scholar 

  5. P. Gaubert: Sur la production artificielle de la macle des spinelles dans les cristaux d’azotate de plomb. Bull. Soc. Franç. Minér. 19, 431–434 (1896).

    Google Scholar 

  6. R.L. Penn and J.F. Banfield: Oriented attachment and growth, twinning, polytypism, and formation of metastable phases: Insights from nanocrystalline TiO2. Am. Mineral. 83, 1077–1082 (1998).

    CAS  Google Scholar 

  7. L.R. Meng, W.M. Chen, C.P. Chen, H.P. Zhou, Q. Peng, and Y.D. Li: Uniform α-Fe2O3 nanocrystal moniliforme-shape straight-chains. Cryst. Growth Des. 10, 479–482 (2010).

    CAS  Google Scholar 

  8. H.Z. Zhang and J.F. Banfield: Energy calculations predict nanoparticle attachment orientations and asymmetric crystal formation. J. Phys. Chem. Lett. 3, 2882–2886 (2012).

    CAS  Google Scholar 

  9. X. Zhang, Y. He, M.L. Sushko, J. Liu, L.L. Luo, J.J. De Yoreo, S.X. Mao, C.M. Wang, and K.M. Rosso: Direction-specific van der Waals attraction between rutile TiO2 nanocrystals. Science 356, 433–437 (2017).

    Google Scholar 

  10. X. Zhang, Z. Shen, J. Liu, S.N. Kerisit, M.E. Bowden, M.L. Sushko, J.J. De Yoreo, and K.M. Rosso: Direction-specific interaction forces underlying zinc oxide crystal growth by oriented attachment. Nat. Commun. 8, 835 (2017).

    CAS  Google Scholar 

  11. D.S. Li, J.H. Chun, D.D. Xiao, W.J. Zhou, H.C. Cai, L. Zhang, K.M. Rosso, C.J. Mundy, G.K. Schenter, and J.J. De Yoreo: Trends in mica-mica adhesion reflect the influence of molecular details on long-range dispersion forces underlying aggregation and coalignment. Proc. Natl. Acad. Sci. U. S. A. 114, 7537–7542 (2017).

    CAS  Google Scholar 

  12. M.J. Higgins, M. Polcik, T. Fukuma, J.E. Sader, Y. Nakayama, and S.P. Jarvis: Structured water layers adjacent to biological membranes. Biophys. J. 91, 2532–2542 (2006).

    CAS  Google Scholar 

  13. W.Q. Lv, W.D. He, X.N. Wang, Y.H. Niu, H.Q. Cao, J.H. Dickerson, and Z.G. Wang: Understanding the oriented-attachment growth of nanocrystals from an energy point of view: A review. Nanoscale 6, 2531–2547 (2014).

    CAS  Google Scholar 

  14. J.C. Hopkins, R. Podgornik, W.Y. Ching, R.H. French, and V.A. Parsegian: Disentangling the effects of shape and dielectric response in van der Waals interactions between anisotropic bodies. J. Phys. Chem. C 119, 19083–19094 (2015).

    CAS  Google Scholar 

  15. S. Schoche, T. Hofmann, R. Korlacki, T.E. Tiwald, and M. Schubert: Infrared dielectric anisotropy and phonon modes of rutile TiO2. J. Appl. Phys. 113, 164102 (2013).

    Google Scholar 

  16. F. Gervais and B. Piriou: Temperature-dependence of transverse-optic and longitudinal-optic modes in TiO2 (rutile). Phys. Rev. B 10, 1642–1654 (1974).

    CAS  Google Scholar 

  17. F. Gervais and B. Piriou: Anharmonicity in several-polar-mode crystals—Adjusting phonon self-energy of LO and TO modes in Al2O3 and TiO2 to fit infrared reflectivity. J. Phys. C: Solid State Phys. 7, 2374–2386 (1974).

    CAS  Google Scholar 

  18. L. Bergstrom: Hamaker constants of inorganic materials. Adv. Colloid Interface Sci. 70, 125–169 (1997).

    CAS  Google Scholar 

  19. V.A. Parsegian: Van der Waals Forces (Cambridge University Press, New York, NY, 2006).

    Google Scholar 

  20. D. Erts, A. Lohmus, R. Lohmus, H. Olin, A.V. Pokropivny, L. Ryen, and K. Svensson: Force interactions and adhesion of gold contacts using a combined atomic force microscope and transmission electron microscope. Appl. Surf. Sci. 188, 460–466 (2002).

    CAS  Google Scholar 

  21. K. Yasui and K. Kato: Oriented attachment of cubic or spherical BaTiO3 nanocrystals by van der Waals torque. J. Phys. Chem. C 119, 24597–24605 (2015).

    CAS  Google Scholar 

  22. H.G. Liao, L.K. Cui, S. Whitelam, and H.M. Zheng: Real-time imaging of Pt3Fe nanorod growth in solution. Science 336, 1011–1014 (2012).

    CAS  Google Scholar 

  23. G. Kresse, O. Dulub, and U. Diebold: Competing stabilization mechanism for the polar ZnO(0001)–Zn surface. Phys. Rev. B 68, 245409 (2003).

    Google Scholar 

  24. J.B.L. Martins, V. Moliner, J. Andres, E. Longo, and C.A. Taft: Water adsorption on ZnO(0001): A theoretical-study of water-adsorption on \((10\overline 1 0)\) and (0001) Zno surfaces—Molecular cluster, basis-set and effective core potential dependence. J. Mol. Struct.: THEOCHEM 330, 347–351 (1995).

    CAS  Google Scholar 

  25. A. Onsten, D. Stoltz, P. Palmgren, S. Yu, M. Gothelid, and U.O. Karlsson: Water adsorption on ZnO(0001): Transition from triangular surface structures to a disordered hydroxyl terminated phase. J. Phys. Chem. C 114, 11157–11161 (2010).

    Google Scholar 

  26. J.A. Rodriguez and C.T. Campbell: A quantum-chemical study of the adsorption of water, formaldehyde and ammonia on copper surfaces and water on ZnO(0001). Surf. Sci. 197, 567–593 (1988).

    CAS  Google Scholar 

  27. M. Schiek, K. Al-Shamery, M. Kunat, F. Traeger, and C. Woll: Water adsorption on the hydroxylated H–(1 × 1)O–ZnO(0001) surface. Phys. Chem. Chem. Phys. 8, 1505–1512 (2006).

    CAS  Google Scholar 

  28. R. Wahl, J.V. Lauritsen, F. Besenbacher, and G. Kresse: Stabilization mechanism for the polar ZnO \((000\overline 1 )\)–O surface. Phys. Rev. B 87, 085313 (2013).

    Google Scholar 

  29. H. Xu, L. Dong, X.Q. Shi, M.A. Van Hove, W.K. Ho, N. Lin, H.S. Wu, and S.Y. Tong: Stabilizing forces acting on ZnO polar surfaces: STM, LEED, and DFT. Phys. Rev. B 89, 235403 (2014).

    Google Scholar 

  30. H.G. Ye, G.D. Chen, H.B. Niu, Y.Z. Zhu, L. Shao, and Z.J. Qiao: Structures and mechanisms of water adsorption on ZnO(0001) and GaN(0001) surface. J. Phys. Chem. C 117, 15976–15983 (2013).

    CAS  Google Scholar 

  31. D. Mora-Fonz, T. Lazauskas, M.R. Farrow, C.R.A. Catlow, S.M. Woodley, and A.A. Sokol: Why are polar surfaces of ZnO stable? Chem. Mater. 29, 5306–5320 (2017).

    CAS  Google Scholar 

  32. C. Pacholski, A. Kornowski, and H. Weller: Self-assembly of ZnO: From nanodots, to nanorods. Angew. Chem., Int. Ed. 41, 1188–1191 (2002).

    CAS  Google Scholar 

  33. B.L. Fan, Y.M. Zhang, R.L. Yan, and J.Y. Fan: Multistage growth of monocrystalline ZnO nanowires and twin-nanorods: Oriented attachment and role of the spontaneous polarization force. CrystEngComm 18, 6492–6501 (2016).

    CAS  Google Scholar 

  34. H.Z. Zhang and J.F. Banfield: Interatomic Coulombic interactions as the driving force for oriented attachment. CrystEngComm 16, 1568–1578 (2014).

    CAS  Google Scholar 

  35. B. Derjaguin and L. Landau: Theory of stability of highly charged lyophobic sols and adhesion of highly charged particles in solutions of electrolytes. Zh Eksp Teor Fiz 15, 663–682 (1945).

    Google Scholar 

  36. E.J.W. Verwey: Theory of the stability of lyophobic colloids. Philips Res. Rep. 1, 33–49 (1945).

    Google Scholar 

  37. E.J.W. Verwey: Theory of the stability of lyophobic colloids. J. Phys. Colloid Chem. 51, 631–636 (1947).

    CAS  Google Scholar 

  38. V.E. Shubin and P. Kekicheff: Electrical double-layer structure revisited via a surface force apparatus—Mica interfaces in lithium-nitrate solutions. J. Colloid Interface Sci. 155, 108–123 (1993).

    CAS  Google Scholar 

  39. H.K. Kim, E. Tuite, B. Norden, and B.W. Ninham: Co-ion dependence of DNA nuclease activity suggests hydrophobic cavitation as a potential source of activation energy. Eur. Phys. J. E 4, 411–417 (2001).

    CAS  Google Scholar 

  40. M. Bostrom, D.R.M. Williams, and B.W. Ninham: Specific ion effects: Why DLVO theory fails for biology and colloid systems. Phys. Rev. Lett. 87, 168103 (2001).

    CAS  Google Scholar 

  41. M. Dubois, T. Zemb, N. Fuller, R.P. Rand, and V.A. Parsegian: Equation of state of a charged bilayer system: Measure of the entropy of the lamellar–lamellar transition in DDABr (vol 108, pg 7855, 1998). J. Chem. Phys. 109, 8731 (1998).

    CAS  Google Scholar 

  42. M. Dubois, T. Zemb, N. Fuller, R.P. Rand, and V.A. Parsegian: Equation of state of a charged bilayer system: Measure of the entropy of the lamellar–lamellar transition in DDABr. J. Chem. Phys. 108, 7855–7869 (1998).

    CAS  Google Scholar 

  43. R.M. Pashley, P.M. Mcguiggan, B.W. Ninham, J. Brady, and D.F. Evans: Direct measurements of surface forces between bilayers of double-chained quaternary ammonium acetate and bromide surfactants. J. Phys. Chem. 90, 1637–1642 (1986).

    CAS  Google Scholar 

  44. N.D. Burrows, C.R.H. Hale, and R.L. Penn: Effect of pH on the kinetics of crystal growth by oriented aggregation. Cryst. Growth Des. 13, 3396–3403 (2013).

    CAS  Google Scholar 

  45. R.L. Penn and J.F. Banfield: Morphology development and crystal growth in nanocrystalline aggregates under hydrothermal conditions: Insights from titania. Geochim. Cosmochim. Acta 63, 1549–1557 (1999).

    CAS  Google Scholar 

  46. N.D. Burrows, C.R.H. Hale, and R.L. Penn: Effect of ionic strength on the kinetics of crystal growth by oriented aggregation. Cryst. Growth Des. 12, 4787–4797 (2012).

    CAS  Google Scholar 

  47. R.M. Pashley and J.N. Israelachvili: Molecular layering of water in thin-films between mica surfaces and its relation to hydration forces. J. Colloid Interface Sci. 101, 511–523 (1984).

    CAS  Google Scholar 

  48. D. Spagnoli, B. Gilbert, G.A. Waychunas, and J.F. Banfield: Prediction of the effects of size and morphology on the structure of water around hematite nanoparticles. Geochim. Cosmochim. Acta 73, 4023–4033 (2009).

    CAS  Google Scholar 

  49. H.Z. Zhang, J.J. De Yoreo, and J.F. Banfield: A unified description of attachment-based crystal growth. ACS Nano 8, 6526–6530 (2014).

    CAS  Google Scholar 

  50. M. Raju, A.C.T. van Duin, and K.A. Fichthorn: Mechanisms of oriented attachment of TiO2 nanocrystals in vacuum and humid environments: Reactive molecular dynamics. Nano Lett. 14, 1836–1842 (2014).

    CAS  Google Scholar 

  51. P.M. Mcguiggan and J.N. Israelachvili: Adhesion and short-range forces between surfaces. 2. Effects of surface lattice mismatch. J. Mater. Res. 5, 2232–2243 (1990).

    CAS  Google Scholar 

  52. P.M. Mcguiggan and J.N. Israelachvili: Measurements of the effect of angular lattice mismatch on the adhesion energy between two mica surfaces in water. MRS Online Proc. Libr. 138, 349 (2011).

    Google Scholar 

  53. N. Alcantar, J. Israelachvili, and J. Boles: Forces and ionic transport between mica surfaces: Implications for pressure solution. Geochim. Cosmochim. Acta 67, 1289–1304 (2003).

    CAS  Google Scholar 

  54. Q.Y. Tan, G.T. Zhao, Y.H. Qiu, Y.J. Kan, Z.H. Ni, and Y.F. Chen: Experimental observation of the ion–ion correlation effects on charge inversion and strong adhesion between mica surfaces in aqueous electrolyte solutions. Langmuir 30, 10845–10854 (2014).

    CAS  Google Scholar 

  55. P.A. Pincus and S.A. Safran: Charge fluctuations and membrane attractions. Europhys. Lett. 42, 103–108 (1998).

    CAS  Google Scholar 

  56. G.S. Manning: Counterion condensation theory of attraction between like charges in the absence of multivalent counterions. Eur. Phys. J. E 34, 132 (2011).

    Google Scholar 

  57. F. Giberti, M. Salvalaglio, and M. Parrinello: Metadynamics studies of crystal nucleation IUCrJ 2, 256–266 (2015).

    CAS  Google Scholar 

  58. P. Raiteri and J.D. Gale: Water is the key to nonclassical nucleation of amorphous calcium carbonate. J. Am. Chem. Soc. 132, 17623–17634 (2010).

    CAS  Google Scholar 

  59. R. Demichelis, P. Raiteri, J.D. Gale, D. Quigley, and D. Gebauer: Stable prenucleation mineral clusters are liquid-like ionic polymers. Nat. Commun. 2, 590 (2011).

    Google Scholar 

  60. A.F. Wallace, L.O. Hedges, A. Fernandez-Martinez, P. Raiteri, J.D. Gale, G.A. Waychunas, S. Whitelam, J.F. Banfield, and J.J. De Yoreo: Microscopic evidence for liquid-liquid separation in supersaturated CaCO3 solutions. Science 341, 885–889 (2013).

    CAS  Google Scholar 

  61. P. Raiteri, J.D. Gale, D. Quigley, and P.M. Rodger: Derivation of an accurate force-field for simulating the growth of calcium carbonate from aqueous solution: A new model for the calcite−water interface. J. Phys. Chem. C 114, 5997–6010 (2010).

    CAS  Google Scholar 

  62. Y. Lifanov, B. Vorselaars, and D. Quigley: Nucleation barrier reconstruction via the seeding method in a lattice model with competing nucleation pathways. J. Chem. Phys. 145, 211912 (2016).

    Google Scholar 

  63. N.E. Zimmermann, B. Vorselaars, D. Quigley, and B. Peters: Nucleation of NaCl from aqueous solution: Critical sizes, ion-attachment kinetics, and rates. J. Am. Chem. Soc. 137, 13352–13361 (2015).

    CAS  Google Scholar 

  64. B. Slater and D. Quigley: Crystal nucleation: Zeroing in on ice. Nat. Mater. 13, 670–671 (2014).

    CAS  Google Scholar 

  65. P.J.M. Smeets, A.R. Finney, W. Habraken, F. Nudelman, H. Friedrich, J. Laven, J.J. De Yoreo, P.M. Rodger, and N. Sommerdijk: A classical view on nonclassical nucleation. Proc. Natl. Acad. Sci. U. S. A. 114, E7882–E7890 (2017).

    CAS  Google Scholar 

  66. D. Quigley, C.L. Freeman, J.H. Harding, and P.M. Rodger: Sampling the structure of calcium carbonate nanoparticles with metadynamics. J. Chem. Phys. 134, 044703 (2011).

    CAS  Google Scholar 

  67. A. Kawska, J. Brickmann, R. Kniep, O. Hochrein, and D. Zahn: An atomistic simulation scheme for modeling crystal formation from solution. J. Chem. Phys. 124, 024513 (2006).

    Google Scholar 

  68. R.P. Sear: The non-classical nucleation of crystals: Microscopic mechanisms and applications to molecular crystals, ice and calcium carbonate. Int. Mater. Rev. 57, 328–356 (2012).

    CAS  Google Scholar 

  69. D. Gebauer, M. Kellermeier, J.D. Gale, L. Bergstrom, and H. Colfen: Pre-nucleation clusters as solute precursors in crystallisation. Chem. Soc. Rev. 43, 2348–2371 (2014).

    CAS  Google Scholar 

  70. Z. Mester and A.Z. Panagiotopoulos: Mean ionic activity coefficients in aqueous NaCl solutions from molecular dynamics simulations. J. Chem. Phys. 142, 044507 (2015).

    Google Scholar 

  71. Y. Rosenfeld: Free-energy model for the inhomogeneous hard-sphere fluid mixture and density-functional theory of freezing. Phys. Rev. Lett. 63, 980–983 (1989).

    CAS  Google Scholar 

  72. G. Kahl and H. Lowen: Classical density functional theory: An ideal tool to study heterogeneous crystal nucleation. J. Phys.: Condens. Matter 21, 464101 (2009).

    Google Scholar 

  73. J. Wu and Z. Li: Density-functional theory for complex fluids. Annu. Rev. Phys. Chem. 58, 85–112 (2007).

    CAS  Google Scholar 

  74. D.W. Oxtoby: Homogeneous nucleation—Theory and experiment. J. Phys.: Condens. Matter 4, 7627–7650 (1992).

    Google Scholar 

  75. M.L. Sushko and K.M. Rosso: The origin of facet selectivity and alignment in anatase TiO2 nanoparticles in electrolyte solutions: Implications for oriented attachment in metal oxides. Nanoscale 8, 19714–19725 (2016).

    CAS  Google Scholar 

  76. K.S. Cho, D.V. Talapin, W. Gaschler, and C.B. Murray: Designing PbSe nanowires and nanorings through oriented attachment of nanoparticles. J. Am. Chem. Soc. 127, 7140–7147 (2005).

    CAS  Google Scholar 

  77. M.P. Boneschanscher, W.H. Evers, J.J. Geuchies, T. Altantzis, B. Goris, F.T. Rabouw, S.A.P. van Rossum, H.S.J. van der Zant, L.D.A. Siebbeles, G. Van Tendeloo, I. Swart, J. Hilhorst, A.V. Petukhov, S. Bals, and D. Vanmaekelbergh: Long-range orientation and atomic attachment of nanocrystals in 2D honeycomb superlattices. Science 344, 1377–1380 (2014).

    CAS  Google Scholar 

  78. K.A. Fichthorn: Atomic-scale aspects of oriented attachment. Chem. Eng. Sci. 121, 10–15 (2015).

    CAS  Google Scholar 

  79. J. Israelachvili: Intermolecular and Surface Forces (Academic Press, New York, 1991).

    Google Scholar 

  80. R.L. Penn and J.A. Soltis: Characterizing crystal growth by oriented aggregation. CrystEngComm 16, 1409–1418 (2014).

    CAS  Google Scholar 

  81. X.G. Xue, R.L. Penn, E.R. Leite, F. Huang, and Z. Lin: Crystal growth by oriented attachment: Kinetic models and control factors. CrystEngComm 16, 1419–1429 (2014).

    CAS  Google Scholar 

  82. S. Leikin, V.A. Parsegian, D.C. Rau, and R.P. Rand: Hydration forces. Annu. Rev. Phys. Chem. 44, 369–395 (1993).

    CAS  Google Scholar 

  83. E. Schneck, F. Sedlmeier, and R.R. Netz: Hydration repulsion between biomembranes results from an interplay of dehydration and depolarization. Proc. Natl. Acad. Sci. U. S. A. 109, 14405–14409 (2012).

    CAS  Google Scholar 

  84. Y.S. Leng: Hydration force between mica surfaces in aqueous KCl electrolyte solution. Langmuir 28, 5339–5349 (2012).

    CAS  Google Scholar 

  85. K.C. Wen and W.D. He: Can oriented-attachment be an efficient growth mechanism for the synthesis of 1D nanocrystals via atomic layer deposition? Nanotechnology 26, 382001 (2015).

    Google Scholar 

  86. C.G. Lu and Z.Y. Tang: Advanced inorganic nanoarchitectures from oriented self-assembly. Adv. Mater. 28, 1096–1108 (2016).

    CAS  Google Scholar 

Download references

Acknowledgments

This material is based upon work supported by the U.S. Department of Energy (DOE) Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division, through its Geosciences Program at Pacific Northwest National Laboratory (PNNL). PNNL is a multiprogram national laboratory operated by Battelle for the DOE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria L. Sushko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sushko, M.L. Understanding the driving forces for crystal growth by oriented attachment through theory and simulations. Journal of Materials Research 34, 2914–2927 (2019). https://doi.org/10.1557/jmr.2019.151

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2019.151

Navigation