Skip to main content

Advertisement

Log in

Nanotexturization of Ti-based implants in simulated body fluid: Influence of synthesis parameters on coating properties and kinetics of drug release

  • Biomedical Materials, Regenerative Medicine and Drug Delivery
  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In the present study, TiO2NT coatings grown on simulated body fluid-based electrolyte were investigated as drug delivery devices. Nanotubes (NTs) were grown over commercially pure Ti and Ti6Al4V alloy. Morphology analysis showed that NTs in alloy samples present an inner diameter of 10 nm smaller in average than NTs grown over pure Ti. The surface wettability in water decreased with the anodizing time for both substrates. The application of coatings as drug delivery devices has been studied through the incorporation of ciprofloxacin. To control the drug release, collagen was used as the diffusional barrier. It was observed the drug release follows a Fick’s kinetics. Bioactivity assays showed the absence of hemolytic activity. The concentration of the drug during the release interval remained below the toxic concentration limit, presenting a bacteriostatic activity. All coatings prepared presented a high antibacterial activity, being the area of inhibition of bacterial growth above 13 times the area of the implant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. G.C. Gurtner, M.J. Callaghan, and M.T. Longaker: Progress and potential for regenerative medicine. Annu. Rev. Med. 58, 299 (2007).

    Article  CAS  Google Scholar 

  2. H. Habazaki, T. Onodera, K. Fushimi, H. Konno, and K. Toyotake: Spark anodizing of β-Ti alloy for wear-resistant coating. Surf. Coat. Technol. 201, 8730 (2007).

    Article  CAS  Google Scholar 

  3. B.M. Holzapfel, J. Reichert, J. Schantz, U. Gbureck, L. Rackwitz, U. Nöth, F. Jakob, M. Rudert, J. Groll, and D. Werner: How smart do biomaterials need to be? A translational science and clinical point of view. Adv. Drug Delivery Rev. 65, 581–603 (2012).

    Article  CAS  Google Scholar 

  4. R. Murugan and S. Ramakrishna: Development of nanocomposites for bone grafting. Compos. Sci. Technol. 65, 2385 (2005).

    Article  CAS  Google Scholar 

  5. J.M. Macak, H. Tsuchiya, L. Taveira, A. Ghicov, and P. Schmuki: Self-organized nanotubular oxide layers on Ti–6Al–7Nb and Ti–6Al–4V formed by anodization in NH4F solutions. J. Biomed. Mater. Res., Part A 75, 928 (2005).

    Article  CAS  Google Scholar 

  6. D. Gong, C.A. Grimes, O.K. Varghese, W. Hu, R.S. Singh, Z. Chen, and E.C. Dickey: Titanium oxide nanotube arrays prepared by anodic oxidation. J. Mater. Res. 16, 3331 (2011).

    Article  Google Scholar 

  7. D. Kubies, L. Himmlová, T. Riedel, E. Chánová, K. Balík, M.D.Ě. Rová, J. Bártová, and V. Pešáková: The interaction of osteoblasts with bone-implant materials: 1. The effect of physicochemical surface properties of implant materials. Physiol. Res. 8408, 95 (2011).

    Article  Google Scholar 

  8. L. Le Guehennec, B. Enkel, P. Weiss, Y. Amouriq, and P. Layrolle: Osteoblastic cell behaviour on different titanium implant surfaces. Acta Biomater. 4, 535 (2008).

    Article  CAS  Google Scholar 

  9. D.M.D. Ehrenfest, P.G. Coelho, B. Kang, Y. Sul, and T. Albrektsson: Classification of osseointegrated implant surfaces: Materials, chemistry and topography. Trends Biotechnol. 28, 198 (2010).

    Article  CAS  Google Scholar 

  10. E. Rieger, A. Dupret-bories, L. Salou, P. Layrolle, C. Debry, P. Lavalle, and N.E. Vrana: Controlled implant/soft tissue interaction by nanoscale surface modifications of 3D porous titanium implants. Nanoscale 7, 9908 (2015).

    Article  CAS  Google Scholar 

  11. J. Wei, T. Igarashi, N. Okumori, T. Igarashi, T. Maetani, B. Liu, and M. Yoshinari: Influence of surface wettability on competitive protein adsorption and initial attachment of osteoblasts. Biomed. Mater. 4, 45002 (2009).

    Article  CAS  Google Scholar 

  12. K. Hori and S. Matsumoto: Bacterial adhesion: From mechanism to control. Biochem. Eng. J. 48, 424 (2010).

    Article  CAS  Google Scholar 

  13. K.G. Neoh, X. Hu, D. Zheng, and E.T. Kang: Balancing osteoblast functions and bacterial adhesion on functionalized titanium surfaces. Biomaterials 33, 2813 (2012).

    Article  CAS  Google Scholar 

  14. C. Yao and T.J. Webster: Prolonged antibiotic delivery from anodized nanotubular titanium using a co-precipitation drug loading method. J. Biomed. Mater. Res., Part B 91, 587 (2009).

    Article  CAS  Google Scholar 

  15. J.M. Unagolla and A.C. Jayasuriya: Drug transport mechanisms and in vitro release kinetics of vancomycin encapsulated chitosan–alginate polyelectrolyte microparticles as a controlled drug delivery system. Eur. J. Pharm. Sci. 114, 199 (2018).

    Article  CAS  Google Scholar 

  16. D. Wei, R. Zhou, W. Feng, B. Li, and Y. Wang: Microarc oxidized TiO2 based ceramic coatings combined with cefazolin sodium/chitosan composited drug fi lm on porous titanium for biomedical applications. Mater. Sci. Eng., C 33, 4118 (2013).

    Article  CAS  Google Scholar 

  17. L. Mohan, C. Anandan, and N. Rajendran: Drug release characteristics of quercetin-loaded TiO2 nanotubes coated with chitosan. Int. J. Biol. Macromol. 93, 1633 (2016).

    Article  CAS  Google Scholar 

  18. M.D. Shoulders and R.T. Raines: Collagen structure and stability. Annu. Rev. Biochem. 78, 929 (2009).

    Article  CAS  Google Scholar 

  19. C. Roehlecke, M. Witt, M. Kasper, E. Schulze, C. Wolf, A. Hofer, and R.H.W. Funk: Synergistic effect of titanium alloy and collagen type I on cell adhesion, proliferation and differentiation of osteoblast-like cells. Cells Tissues Organs 168, 178 (2001).

    Article  CAS  Google Scholar 

  20. W.J. Landis and F.H. Silver: Mineral deposition in the extracellular matrices of vertebrate tissues: Identification of possible apatite nucleation sites on type I collagen. Cells Tissues Organs 189, 20 (2009).

    Article  CAS  Google Scholar 

  21. J.M. Macak, H. Tsuchiya, and P. Schmuki: High-aspect-ratio TiO2 nanotubes by anodization of titanium Angew. Chem., Int. Ed. 44, 2100 (2005).

    Article  CAS  Google Scholar 

  22. J.M. Macak, H. Tsuchiya, A. Ghicov, K. Yasuda, R. Hahn, S. Bauer, and P. Schmuki: TiO2 nanotubes: Self-organized electrochemical formation, properties and applications. Curr. Opin. Solid State Mater. Sci. 11, 3 (2007).

    Article  CAS  Google Scholar 

  23. D. Regonini, C.R. Bowen, A. Jaroenworaluck, and R. Stevens: A review of growth mechanism, structure and crystallinity of anodized TiO2 nanotubes. Mater. Sci. Eng., R 74, 377 (2013).

    Article  Google Scholar 

  24. A. Ghicov and P. Schmuki: Self-ordering electrochemistry: A review on growth and functionality of TiO2 nanotubes and other self-aligned MOx structures. Chem. Commun. 20, 2791 (2009).

    Article  CAS  Google Scholar 

  25. M.T. Mohammed, Z.A. Khan, and A.N. Siddiquee: Surface modifications of titanium materials for developing corrosion behavior in human body environment: A review. Procedia Mater. Sci. 6, 1610 (2014).

    Article  CAS  Google Scholar 

  26. M. Kulkarni, A. Mazare, P. Schmuki, and A. Iglič: Biomaterial surface modification of titanium and titanium alloys for medical applications. Nanomedicine 45, 111 (2017).

    Google Scholar 

  27. P. Scherrer: Determination of the size and internal structure of colloidal particles using X-rays. Math-Phys Klasse 2, 98 (1918).

    Google Scholar 

  28. D.H. Shin, T. Shokuhfar, C.K. Choi, S.H. Lee, and C. Friedrich: Wettability changes of TiO2 nanotube surfaces. Nanotechnology 22, 315704–315711 (2011).

    Article  CAS  Google Scholar 

  29. T. Sun and M. Wang: A comparative study on titania layers formed on Ti, Ti–6Al–4V and NiTi shape memory alloy through a low temperature oxidation process. Surf. Coat. Technol. 205, 92 (2010).

    Article  CAS  Google Scholar 

  30. P.L. Ritger and N.A. Peppas: A simple equation for description of solute release II. Fickian and anomalous release from swellable devices 5, 23 (1987).

    CAS  Google Scholar 

  31. W. Feng, Z. Geng, Z. Li, Z. Cui, S. Zhu, Y. Liang, Y. Liu, R. Wang, and X. Yang: Controlled release behaviour and antibacterial effects of antibiotic-loaded titania nanotubes. Mater. Sci. Eng., C 62, 105 (2016).

    Article  CAS  Google Scholar 

  32. A. Zitting and E. Skyttä: Biological activity of titanium dioxides. Int. Arch. Occup. Environ. Health 43, 93 (1979).

    Article  CAS  Google Scholar 

  33. A.P. Simon and M.d.S. Sikora: Eletrólito para síntese eletroquímica de biomateriais a base de titânio. BR Patent No. 10 2018 002514 7, 2018.

  34. T. Kokubo, H. Kim, and M. Kawashita: Novel bioactive materials with different mechanical properties. Biomaterials 24, 2161 (2003).

    Article  CAS  Google Scholar 

  35. C.A. Schneider, W.S. Rasband, K.W. Eliceiri, and C. Instrumentation: NIH image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671 (2012).

    Article  CAS  Google Scholar 

  36. K. Gulati, M. Kogawa, M. Prideaux, D.M. Findlay, G.J. Atkins, and D. Losic: Drug-releasing nano-engineered titanium implants: Therapeutic efficacy in 3D cell culture model, controlled release and stability. Mater. Sci. Eng., C 69, 831 (2016).

    Article  CAS  Google Scholar 

  37. H.M. Abdou: Dissolution, bioavailability and bioequivalence. Drug Dev. Ind. Pharm. 16, 185 (1990).

    Article  Google Scholar 

  38. M. Sinn Aw, M. Kurian, and D. Losic: Non-eroding drug-releasing implants with ordered nanoporous and nanotubular structures: Concepts for controlling drug release. Biomater. Sci. 2, 10 (2014).

    Article  CAS  Google Scholar 

  39. Clinical and Laboratory Standards Institute: Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically (Clinical and Laboratory Standards Institute, Wayne, Pennsylvania, 2015).

    Google Scholar 

  40. F. Krichen, W. Karoud, A. Sila, B.E. Abdelmalek, R. Ghorbel, S. Ellouz-Chaabouni, and A. Bougatef: Extraction, characterization and antimicrobial activity of sulfated polysaccharides from fish skins. Int. J. Biol. Macromol. 75, 283 (2015).

    Article  CAS  Google Scholar 

  41. V. Bulmus, M. Woodward, L. Lin, N. Murthy, P. Stayton, and A. Hoffman: A new pH-responsive and glutathione-reactive, endosomal membrane-disruptive polymeric carrier for intracellular delivery of biomolecular drugs. J. Controlled Release 93, 105 (2003).

    Article  CAS  Google Scholar 

  42. R. Palanivelu and A. Ruban Kumar: Synthesis, characterization, in vitro anti-proliferative and hemolytic activity of hydroxyapatite. Spectrochim. Acta, Part A 127, 434 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors thank the UTFPR, Central Analysis of UTFPR-PB, UFSCar, Biocenter Clinical Analysis Laboratory, and to Brazilian Nanotechnology National Laboratory (LNNano) in National Center of Energy and Materials Research (CNPEM) and Analysis Center of UTFPR-PB. This work was supported by UTFPR [PAPCDT 06/2016 and 07/2017]. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariana de Souza Sikora.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreira, C.H., Simon, A.P., Santos, V.A.Q. et al. Nanotexturization of Ti-based implants in simulated body fluid: Influence of synthesis parameters on coating properties and kinetics of drug release. Journal of Materials Research 34, 2828–2836 (2019). https://doi.org/10.1557/jmr.2019.216

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2019.216

Navigation