Skip to main content
Log in

Chemical and electronic structure analysis of a SrTiO3 (001)/p-Ge (001) hydrogen evolution photocathode

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Germanium is a small-gap semiconductor that efficiently absorbs visible light, resulting in photoexcited electrons predicted to be sufficiently energetic to reduce H2O for H2 gas evolution. In order to protect the surface from corrosion and prevent surface charge recombination in contact with aqueous pH 7 electrolyte, we grew epitaxial SrTiO3 layers of different thicknesses on p-Ge (001) surfaces. Four-nanometer SrTiO3 allows photogenerated electrons to reach the surface and evolve H2gas, while 13 nm SrTiO3 blocks these electrons. Ambient pressure x-ray photoelectron spectroscopy indicates that the surface readily dissociates H2O to form OH species, which may impact surface band bending.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. T.R. Cook, D.K. Dogutan, S.Y. Reece, Y. Surendranath, T.S. Teets, and D. G. Nocera: Solar energy supply and storage for the legacy and nonlegacy worlds. Chem. Rev. 110, 6474–6502 (2010).

    Article  CAS  Google Scholar 

  2. M.G. Walter, E.L. Warren, J.R. McKone, S.W. Boettcher, Q. Mi, E. A. Santori, and N.S. Lewis: Solar water splitting cells. Chem. Rev. 110, 6446–6473 (2010).

    Article  CAS  Google Scholar 

  3. A. Kudo and Y. Miseki: Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38, 253–278 (2009).

    Article  CAS  Google Scholar 

  4. J. Li and N. Wu: Semiconductor-based photocatalysts and photoelectro-chemical cells for solar fuel generation: a review. Catal. Sci. Technol. 5, 1360–1384 (2015).

    Article  CAS  Google Scholar 

  5. B.D. Alexander, P.J. Kulesza, I. Rutkowska, R. Solarska, and J. Augustynski: Metal oxide photoanodes for solar hydrogen production. J. Mater. Chem. 18, 2298–2303 (2008).

    Article  CAS  Google Scholar 

  6. K. Sivula and R. Van de Krol: Semiconducting materials for photoelectro-chemical energy conversion. Nat. Rev. Mater. 1, 15010 (2016).

    Article  CAS  Google Scholar 

  7. W.A. Smith, I.D. Sharp, N.C. Strandwitz, and J. Bisquert: Interfacial band-edge energetics for solar fuels production. Energy Environ. Sci. 8, 2851–2862 (2015).

    Article  CAS  Google Scholar 

  8. S.M. Sze: Physics of semiconductor devices (John Wiley and Sons Hoboken, 1981).

    Google Scholar 

  9. M.B. Prince: Drift mobilities in semiconductors. I. Germanium. Phys. Rev. 92, 681–687 (1953).

    Article  CAS  Google Scholar 

  10. S. Chen and L.-W. Wang: Thermodynamic oxidation and reduction potentials of photocatalytic semiconductors in aqueous solution. Chem. Mater. 24, 3659–3666 (2012).

    Article  CAS  Google Scholar 

  11. V.R. Erdelyi and M. Green: Hydrogen overpotential on germanium electrodes. Nature 182, 1592 (1958).

    Article  CAS  Google Scholar 

  12. R. Memming and G. Neumann: Electrochemical reduction and hydrogen evolution on germanium electrodes. J. Eiectroanai. Chem. Interfacial Electrochem. 21, 295–305 (1969).

    Article  CAS  Google Scholar 

  13. S. Hu, N.S. Lewis, J.W. Ager, J. Yang, J.R. McKone, and N.C. Strandwitz: Thin-film materials for the protection of semiconducting photoelectrodes in solar-fuel generators. J. Phys. Chem. C 119, 24201–24228 (2015).

    Article  CAS  Google Scholar 

  14. L. Kornblum, D.P. Fenning, J. Faucher, J. Hwang, A. Boni, M.G. Han, M. D. Morales-Acosta, Y. Zhu, E.I. Altman, M.I. Lee, C.H. Ahn, F.J. Walker, and Y. Shao-Horn: Solar hydrogen production using epitaxial SrTiO3 on a GaAs photovoltaic. Energy Environ. Sci. 10, 377–382 (2017).

  15. M.K. Hudait, M. Clavel, Y. Zhu, P.S. Goley, S. Kundu, D. Maurya, and S. Priya: Integration of SrTiO3 on crystallographically oriented epitaxial germanium for low-power device applications. ACS Appl. Mater. Interfaces!, 5471–5479 (2015).

    Google Scholar 

  16. M.D. McDaniel, T.Q. Ngo, A. Posadas, C. Hu, S. Lu, D.J. Smith, E.T. Yu, A. A. Demkov, and J.G. Ekerdt: A chemical route to monolithic integration of crystalline oxides on semiconductors. Adv. Mater. Interfaces 1, 1400081 (2014).

    Article  Google Scholar 

  17. S.A. Chambers, Y. Du, R.B. Comes, S.R. Spurgeon, and P.V. Sushko: The effects of core-level broadening in determining band alignment at the epitaxial SrTiO3(001)/p-Ge(001) heterojunction. Appl. Phys. Lett. 110, 082104 (2017).

    Article  Google Scholar 

  18. K.A. Stoerzinger, W.T. Hong, E.J. Crumlin, H. Bluhm, and Y. Shao-Horn: Insights into electrochemical reactions from ambient pressure photoelectron spectroscopy. Acc. Chem. Res. 48, 2976–2983 (2015).

    Article  CAS  Google Scholar 

  19. P. Ponath, A.B. Posadas, R.C. Hatch, and A.A. Demkov: Preparation of a clean Ge(001) surface using oxygen plasma cleaning. J. Vac. Sci. Technol. B: Nanotechnol. Microelectron.: Mater. Process. Meas. Phenom. 31, 031201 (2013).

    Google Scholar 

  20. M. Jahangir-Moghadam, K. Ahmadi-Majlan, X. Shen, T. Droubay, M. Bowden, M. Chrysler, D. Su, S.A. Chambers, and J.H. Ngai: Band-gap engineering at a semiconductor-crystalline oxide interface. Adv. Mater. Interfaces 2, 1400497 (2015).

    Article  Google Scholar 

  21. L. Jones, H. Yang, T.J. Pennycook, M.S.J. Marshall, S. Van Aert, N. D. Browning, M.R. Castell, and P.D. Nellist: Smart align—a new tool for robust non-rigid registration of scanning microscope data. Adv. Struct. Chem. Imaging 1, 8 (2015).

    Article  Google Scholar 

  22. O. Krivanek, M.F. Chisholm, V. Nicolosi, T.J. Pennycook, G.J. Corbin, N. Dellby, M.F. Murfitt, C.S. Own, Z.S. Szilagyi, M.P. Oxley, S. T. Pantelides, and S.J. Pennycook: Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy. Nature 464, 571 (2010).

    Article  CAS  Google Scholar 

  23. M.E. Grass, P.G. Karlsson, F. Aksoy, M. Lundqvist, B. Wannberg, B. S. Mun, Z. Hussain, and Z. Liu: New ambient pressure photoemission endstation at advanced light source beamline 9.3.2. Rev. Sci. Instrum. 81, 053106 (2010).

    Article  Google Scholar 

  24. K.A. Stoerzinger, W.T. Hong, E.J. Crumlin, H. Bluhm, M.D. Biegalski, and Y. Shao-Horn: Water reactivity on the LaCoO3 (001) surface: an ambient pressure x-ray photoelectron spectroscopy study. J. Phys. Chem. C 118, 19733–19741 (2014).

    Article  CAS  Google Scholar 

  25. L. Jones, A. Varambhia, R. Beanland, D. Kepaptsoglou, I. Griffiths, A. Ishizuka, F. Azough, R. Freer, K. Ishizuka, D. Cherns, Q.M. Ramasse, S. Lozano-Perez, and P.D. Nellist: Managing dose-, damage- and data-rates in multi-frame spectrum-imaging. Microscopy (In press), DOI: 10.1093/jmicro/dfx125(2018).

  26. Y. Ping, R. Sundararaman, and W.A. Goddard III: Solvation effects on the band edge positions of photocatalysts from first principles. Phys. Chem. Chem. Phys. 17, 30499–30509 (2015).

    Article  CAS  Google Scholar 

  27. I.E. Castelli, K.S. Thygesen, and K.W. Jacobsen: Calculated Pourbaix diagrams of cubic perovskites for water splitting: stability against corrosion. Top. Catal. 57, 265–272 (2014).

    Article  CAS  Google Scholar 

  28. L.N. Quan, Y.H. Jang, K.A. Stoerzinger, K.J. May, Y.J. Jang, S. T. Kochuveedu, Y. Shao-Horn, and D.H. Kim: Soft-template-carbonization route to highly textured mesoporous carbon-tio2 inverse opals for efficient photocatalytic and photoelectrochemical applications. Phys. Chem. Chem. Phys. 16, 9023–9030 (2014).

    Article  CAS  Google Scholar 

  29. K.C. Kwon, S. Choi, K. Hong, D.M. Andoshe, J.M. Suh, C. Kim, K.S. Choi, J.H. Oh, S.Y. Kim, and H.W. Jang: Tungsten disulfide thin film/p-type Si heterojunction photocathode for efficient photochemical hydrogen production. MRS Commun. 7, 272–279 (2017).

    Article  CAS  Google Scholar 

  30. J.E. Thorne, Y. Zhao, D. He, S. Fan, S. Vanka, Z. Mi, and D. Wang: Understanding the role of co-catalysts on silicon photocathodes using intensity modulated photocurrent spectroscopy. Phys. Chem. Chem. Phys. 19, 29653–29659 (2017).

    Article  CAS  Google Scholar 

  31. D.V. Esposito, I. Levin, T.P. Moffat, and A.A. Talin: H2 evolution at Si-based metal-insulator-semiconductor photoelectrodes enhanced by inversion channel charge collection and H spillover. Nat Mater. 12, 562 (2013).

    Article  CAS  Google Scholar 

  32. K.A. Stoerzinger, R. Comes, S.R. Spurgeon, S. Thevuthasan, K. Ihm, E. J. Crumlin, and S.A. Chambers: Influence of LaFeO3 surface termination on water reactivity. J. Phys. Chem. Lett. 8, 1038–1043 (2017).

    Article  CAS  Google Scholar 

  33. M. Favaro, F.F. Abdi, M. Lamers, E.J. Crumlin, Z. Liu, R. Van de Krol, and D.E. Starr: Light-induced surface reactions at the bismuth vanadate/ potassium phosphate interface. J. Phys. Chem. B 122, 801–809 (2018).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

AP-XPS and (photo)electrochemistry measurements and analysis were supported for K. A. S. by the Linus Pauling Distinguished Post-doctoral Fellowship at Pacific Northwest National Laboratory (PNNL LDRD 69319). Film growth and characterization was supported at PNNL by the US Department of Energy, Office of Science, Division of Materials Sciences and Engineering under Award No. 10122. The PNNL work was performed in the Environmental Molecular Sciences Laboratory (EMSL), a national science user facility sponsored by the Department of Energy’s Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. PNNL is a multiprogram national laboratory operated for DOE by Battelle. STEM-EELS measurements were carried out at the SuperSTEM Laboratory, the UK National Research Facility for Advanced Electron Microscopy, which is supported by the Engineering and Physical Sciences Research Council (EPSRC). This research used resources of the Advanced Light Source, which is a DOE Office of Science User Facility under contract no. DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelsey A. Stoerzinger.

Electronic supplementary material

43579_2018_8020446_MOESM1_ESM.pdf

Supplemental Information for: Chemical and Electronic Structure Analysis of a SrTiO3 (001) / p-Ge (001) Hydrogen Evolution Photocathode

Supplementary materials

Supplementary materials

The supplementary material for this article can be found at https://doi.org/10.1557/mrc.2018.38

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stoerzinger, K.A., Du, Y., Spurgeon, S.R. et al. Chemical and electronic structure analysis of a SrTiO3 (001)/p-Ge (001) hydrogen evolution photocathode. MRS Communications 8, 446–452 (2018). https://doi.org/10.1557/mrc.2018.38

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2018.38

Navigation