Skip to main content

Advertisement

Log in

3D printing of poly(vinylidene fluoride-trifluoroethylene): a poling-free technique to manufacture flexible and transparent piezoelectric generators

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Flexible piezoelectric generators (PEGs) present a unique opportunity for renewable and sustainable energy harvesting. Here, we present a low-temperature and low-energy deposition method using solvent evaporation-assisted three-dimensional printing to deposit electroactive poly (vinylidene fluoride) (PVDF)-trifluoroethylene (TrFE) up to 19 structured layers. Visible-wavelength transmittance was above 92%, while ATR-FTIR spectroscopy showed little change in the electroactive phase fraction between layer depositions. Electroactivity from the fabricated PVDF-TrFE PEGs showed that a single structured layer gave the greatest output at 289.3 mV peak-to-peak voltage. This was proposed to be due to shear-induced polarization affording the alignment of the fluoropolymer dipoles without an electric field or high temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

References

  1. Z.L. Wang, G. Zhu, Y. Yang, S.H. Wang, and C.F. Pan: Progress in nano-generators for portable electronics. Mater. Today 15, 532 (2012).

    Article  CAS  Google Scholar 

  2. C.R. Bowen, J. Taylor, E. LeBoulbar, D. Zabek, A. Chauhan, and R. Vaish: Pyroelectric materials and devices for energy harvesting applications. Energy Environ. Sci. 7, 3836 (2014).

    Article  Google Scholar 

  3. C.R. Bowen, H.A. Kim, P.M. Weaver, and S. Dunn: Piezoelectric and ferroelectric materials and structures for energy harvesting applications. Energy Environ. Sci. 7, 25 (2014).

    Article  CAS  Google Scholar 

  4. J. Li, L. Kang, Y.H. Yu, Y. Long, J.J. Jeffery, W.B. Cai, and X.D. Wang: Study of long-term biocompatibility and bio-safety of implantable nano-generators. Nano Energy 51, 728 (2018).

    Article  CAS  Google Scholar 

  5. Y.H. Yu, H.Y. Sun, H. Orbay, F. Chen, C.G. England, W.B. Cai, and X.D. Wang: Biocompatibility and in vivo operation of implantable mesopo-rous PVDF-based nanogenerators. Nano Energy 27, 275 (2016).

    Article  CAS  Google Scholar 

  6. K.S. Ramadan, D. Sameoto, and S. Evoy: A review of piezoelectric polymers as functional materials for electromechanical transducers. Smart Mater. Struct. 23, 033001 (2014).

    Article  Google Scholar 

  7. P. Martins, A.C. Lopes, and S. Lanceros-Mendez: Electroactive phases of poly(vinylidene fluoride): determination, processing and applications. Prog. Polym.Sci. 39, 683 (2014).

    Article  CAS  Google Scholar 

  8. M.Y. Li, I. Katsouras, C. Piliego, G. Glasser, I. Lieberwirth, P.W.M. Blom, and D.M. de Leeuw: Controlling the microstructure of poly(vinylidene-fluoride) (PVDF) thin films for microelectronics. J. Mater. Chem., 2 7695 (2013).

    Google Scholar 

  9. V. Bhavanasi, V. Kumar, K. Parida, J.X. Wang, and P.S. Lee: Enhanced piezoelectric energy harvesting performance of flexible PVDF-TrFE bilayer films with graphene oxide. ACSAppi. Mater. Interfaces 8, 521 (2016).

    Article  CAS  Google Scholar 

  10. S. Rajala, M. Schouten, G. Krijnen, and S. Tuukkanen: High bending-mode sensitivity of printed piezoelectric poly(vinylidenefluoride-co-trifluoroethylene) sensors. ACS Omega 3, 8067 (2018).

    Article  CAS  Google Scholar 

  11. G. Eberle, H. Schmidt, and W. Eisenmenger: Piezoelectric polymer elec-trets. IEEE Trans. Dielectr. Electr. Insul. 3, 624 (1996).

    Article  CAS  Google Scholar 

  12. T. Soulestin, V. Ladmiral, F.D. Dos Santos, and B. Ameduri: Vinylidene fluoride- and trifluoroethylene-containing fluorinated electroactive copolymers. How does chemistry impact properties? Prog. Polym. Sci. 72, 16 (2017).

    Article  CAS  Google Scholar 

  13. Y. Ito and K. Uchino: Piezoelectricity. In Encyclopedia of RF and Microwave Engineering, edited by K. Chang (John Wiley & Sons, Inc., Hoboken, New Jersey, 2005), p. 480.

    Google Scholar 

  14. X. Chen, H.O.T. Ware, E. Baker, W. Chu, J. Hu, and C. Sun: The development of an all-polymer-based piezoelectric photocurable resin for additive manufacturing. Procedia CIRP 65, 157 (2017).

    Article  Google Scholar 

  15. M. Fortunato, R.C. Chandraiahgari, G. De Bellis, P. Ballirano, F. Sarto, A. Tamburrano, and S.M. Sarto: Piezoelectric effect and electroactive phase nucleation in self-standing films of unpoled PVDF nanocomposite films. Nanomaterials 8, 743 (2018).

    Article  Google Scholar 

  16. S.K. Ghosh and D. Mandal: Synergistically enhanced piezoelectric output in highly aligned 1D polymer nanofibers integrated all-fiber nano-generator for wearable nano-tactile sensor. Nano Energy 53, 245 (2018).

    Article  CAS  Google Scholar 

  17. C. Lee and J.A. Tarbutton: Electric poling-assisted additive manufacturing process for PVDF polymer-based piezoelectric device applications. Smart Mater. Struct. 23, 095044 (2014).

    Article  Google Scholar 

  18. H. Kim, F. Torres, Y. Wu, D. Villagran, Y. Lin, and T.-L. Tseng: Integrated 3D printing and corona poling process of PVDF piezoelectric films for pressure sensor application. Smart Mater. Struct. 26, 085027 (2017).

    Article  Google Scholar 

  19. S. Bodkhe, G. Turcot, F.P. Gosselin, and D. Therriault: One-step solvent evaporation-assisted 3D printing of piezoelectric PVDF nanocomposite structures. ACSAppi. Mater. Interfaces 9, 20833 (2017).

    Article  CAS  Google Scholar 

  20. G. Postiglione, G. Natale, G. Griffini, M. Levi, and S. Turri: Conductive 3D microstructures by direct 3D printing of polymer/carbon nanotube nano-composites via liquid deposition modeling. Compos. Part A: Appl. Sci. Manuf 76, 110 (2015).

    Article  CAS  Google Scholar 

  21. A. Bottino, G. Capannelli, S. Munari, and A. Turturro: Solubility parameters of poly(vinylidene fluoride). J. Polym. Sci., Part B: Polym. Lett. 26, 785 (1988).

    Article  CAS  Google Scholar 

  22. L. Yu and P. Cebe: Crystal polymorphism in electrospun composite nanofibers of poly(vinylidene fluoride) with nanoclay. Polymer 50, 2133 (2009).

    Article  CAS  Google Scholar 

  23. S.V. Murphy and A. Atala: 3D bioprinting of tissues and organs. Nat. Biotechnol. 32, 773 (2014).

    Article  CAS  Google Scholar 

  24. S.C. Ligon, R. Liska, J. Stampfl, M. Gurr, and R. Mülhaupt: Polymers for 3D printing and customized additive manufacturing. Chem. Rev. 117, 10212 (2017).

    Article  CAS  Google Scholar 

  25. X.M. Cai, T.P. Lei, D.H. Sun, and L.W. Lin: A critical analysis of the alpha, beta and gamma phases in poly(vinylidene fluoride) using FTIR. RSC Adv. 7, 15382 (2017).

    Article  CAS  Google Scholar 

  26. S. Barrau, A. Ferri, A. Da Costa, J. Defebvin, S. Leroy, R. Desfeux, and J.M. Lefebvre: Nanoscale investigations of alpha- and gamma-crystal phases in PVDF-based nanocomposites. ACS Appl. Mater. Interfaces 10, 13092 (2018).

    Article  CAS  Google Scholar 

  27. R. Gregorio and M. Cestari: Effect of crystallization temperature on the crystalline phase content and morphology of poly(vinylidene fluoride). J. Polym. Sci., Part B: Polym. Lett. 32, 859 (1994).

    Article  CAS  Google Scholar 

  28. J.H. Yang, T. Ryu, Y. Lansac, Y.H. Jang, and B.H. Lee: Shear stress-induced enhancement of the piezoelectric properties of PVDF-TrFE thin films. Org. Electron. 28, 67 (2016).

    Article  CAS  Google Scholar 

  29. A. Gebrekrstos, M. Sharma, G. Madras, and S. Bose: Critical insights into the effect of shear, shear history, and the concentration of a diluent on the polymorphism in poly(vinylidene fluoride). Cryst. Growth Des. 17, 1957 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Australian Government through the Australian Research Council’s Linkage Projects funding scheme (LP160100071) and Future Fellowships funding scheme (FT130100211). This work was performed in part at the Materials Characterisation and Fabrication Platform (MCFP) at the University of Melbourne and the Victorian Node of the Australian National Fabrication Facility (ANFF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amanda V. Ellis.

Electronic supplementary material

43579_2019_9010159_MOESM1_ESM.pdf

3D Printing of Poly(vinylidene fluoride-trifluoroethylene): a Poling-Free Technique to Manufacture Flexible and Transparent Piezoelectric Generators

Supplementary material

Supplementary material

The supplementary material for this article can be found at https://doi.org/10.1557/mrc.2019.19.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shepelin, N.A., Lussini, V.C., Fox, P.J. et al. 3D printing of poly(vinylidene fluoride-trifluoroethylene): a poling-free technique to manufacture flexible and transparent piezoelectric generators. MRS Communications 9, 159–164 (2019). https://doi.org/10.1557/mrc.2019.19

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2019.19

Navigation