Skip to main content

Advertisement

Log in

Fast and efficient molecular electrocatalysts for H2 production: Using hydrogenase enzymes as guides

  • Recent Developments in Solar Water-Splitting Photocatalysis
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Hydrogen generation using solar energy will require the development of efficient electrocatalysts for proton reduction. This article discusses the important role that proton movement plays in hydrogenase enzymes and potential devices for solar generation. Studies of hydrogenase enzymes provide many important design principles for the development of simpler molecular catalysts. These principles are illustrated with examples from the literature and from the authors’ laboratories. In particular, pendant bases incorporated in the second coordination sphere of catalytic molecules play a number of important roles that are crucial to efficient catalysis. These roles include acting as relays to move protons between the metal center and solution, promoting intra- and intermolecular proton transfer reactions, coupling proton and electron transfer reactions, assisting heterolytic cleavage of hydrogen, and stabilizing critical reaction intermediates. The importance of controlling proton movement on the molecular scale underscores the importance of a similar degree of control in devices designed for the solar production of hydrogen or any fuel generation process involving multiple electrons and protons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Scheme 1

Similar content being viewed by others

References

  1. N. Armaroli, V. Balzani, Angew. Chem. Int. Ed. 46, 52 (2007).

    Article  CAS  Google Scholar 

  2. N.S. Lewis, D.G. Nocera, Proc. Nat. Acad. Sci. U.S.A. 103, 15729 (2006).

    Article  CAS  Google Scholar 

  3. W. Lubitz, W. Tumas, Chem. Rev. 107, 3900 (2007).

    Article  CAS  Google Scholar 

  4. M. Frey, ChemBioChem 3, 153 (2002).

    Article  CAS  Google Scholar 

  5. J.W. Peters, Curr. Opin. Struct. Biol. 9, 670 (1999).

    Article  CAS  Google Scholar 

  6. J.W. Peters, W.N. Lanzilotta, B.J. Lemon, L.C. Seefeldt, Science 282, 1853 (1998).

    Article  CAS  Google Scholar 

  7. Y. Nicolet, A.L. de Lacey, X. Vernède, V.M. Fernandez, E.C. Hatchikian, J.C. Fontecilla-Camps, J. Am. Chem. Soc. 123, 1596 (2001).

    Article  CAS  Google Scholar 

  8. J.C. Fontecilla-Camps, A. Volbeda, C. Cavazza, Y. Nicolet, Chem. Rev. 107, 4273 (2007).

    Article  CAS  Google Scholar 

  9. K.A. Vincent, A. Parkin, F.A. Armstrong, Chem. Rev. 107, 4366 (2007).

    Article  CAS  Google Scholar 

  10. C.C. Page, C.C. Moser, X. Chen, P.L. Dutton, Nature 402, 47 (1999).

    Article  CAS  Google Scholar 

  11. J.N. Onuchic, D.N. Beratan, J.R. Winkler, H.B. Gray, Annu. Rev. Biophys. Biomol. Struct. 21, 349 (1992).

    Article  CAS  Google Scholar 

  12. A.W. Axup, M. Albin, S.L. Mayo, R.J. Crutchley, H.B. Gray, J. Am. Chem. Soc. 110, 435 (1988).

    Article  CAS  Google Scholar 

  13. A. Silakov, B. Wenk, E. Reijerse, W. Lubitz, Phys. Chem. Chem. Phys. 11, 6592 (2009).

    Article  CAS  Google Scholar 

  14. W. Lubitz, E. Reijerse, M. van Gastel, Chem. Rev. 107, 4331 (2007).

    Article  CAS  Google Scholar 

  15. R.J.P. Williams, Nature 376, 643 (1995).

    Article  CAS  Google Scholar 

  16. J.W. Peters, W.N. Lanzilotta, B.J. Lemon, L.C. Seefeldt, Science 282, 1853 (1998).

    Article  CAS  Google Scholar 

  17. Y. Montet, P. Amara, A. Volbeda, X. Vernède, E.C. Hatchikian, M.J. Field, M. Frey, J.C. Fontecilla-Camps, Nat. Struct. Biol. 4, 523 (1997).

    Article  CAS  Google Scholar 

  18. H.-J. Fan, M.B. Hall, J. Am. Chem. Soc. 123, 3828 (2001).

    Article  CAS  Google Scholar 

  19. M. Rakowski DuBois, D.L. DuBois, Acc. Chem. Res. 42,1974 (2009).

    Article  CAS  Google Scholar 

  20. M.R. Dubois, D.L. Dubois, Chem. Soc. Rev. 38, 62 (2009).

    Article  Google Scholar 

  21. A.D. Wilson, R.K. Shoemaker, A. Miedaner, J.T. Muckerman, D.L. DuBois, M. Rakowski DuBois, Proc. Nat. Acad. Sci. 14, 6951 (2007).

    Article  CAS  Google Scholar 

  22. A.D. Wilson, R.H. Newell, M.J. McNevin, J.T. Muckerman, M.R. DuBois, D.L. Dubois, J. Am. Chem. Soc. 128, 358 (2006).

    Article  CAS  Google Scholar 

  23. C.J. Curtis, A. Miedaner, R.F Ciancanelli, W.W. Ellis, B.C. Noll, M.R. DuBois, D.L. DuBois, Inorg. Chem. 42, 216 (2003).

    Article  CAS  Google Scholar 

  24. B.E. Barton, M.T. Olsen, T.B. Rauchfuss, J. Am. Chem. Soc. 130, 16834 (2008).

    Article  CAS  Google Scholar 

  25. N. Wang, M. Wang, J. Liu, K. Jin, L. Chen, L. Sun, Inorg. Chem. 48,11551 (2009).

    Article  CAS  Google Scholar 

  26. P. Schollhammer, J. Talarmin, Eds. C.R. Chim. 11 (8), 789–944 (2008).

  27. C.J. Pickett, S.P Best, Eds. Coord. Chem. Rev. 249 (15–16), 1517–1690 (2005).

  28. C. Tard, C.J. Pickett, Chem. Rev. 109, 2245 (2009).

    Article  CAS  Google Scholar 

  29. A. Le Cloirec, S.P. Best, S. Borg, S.C. Davies, D.J. Evans, D.L. Hughes, C.J. Pickett, Chem. Commun. 2285 (1999).

  30. E.J. Lyon, I.P Georgakaki, J.H. Reibenspies, M.Y. Darensbourg, Angew. Chem. Int. Ed. 38, 3178 (1999).

    Article  CAS  Google Scholar 

  31. M. Schmidt, S.M. Contakes, T.B. Rauchfuss, J. Am. Chem. Soc. 121, 9736 (1999).

    Article  CAS  Google Scholar 

  32. H.X. Li, T.B. Rauchfuss, J. Am. Chem. Soc. 124, 726 (2002).

    Article  CAS  Google Scholar 

  33. S. Ott, M. Kritikos, B. Åkermark, L. Sun, R. Lomoth, Angew. Chem. Int. Ed. 43,1006 (2004).

    Article  CAS  Google Scholar 

  34. G.A.N. Felton, A.K. Vannucci, N. Okumura, L.T Lockett, D.H. Evans, R.S. Glass, D.L. Lichtenberger, Organometallics 27, 4671 (2008).

    Article  CAS  Google Scholar 

  35. T. Liu, M.Y. Darensbourg, J. Am. Chem. Soc. 129, 7008 (2007).

    Article  CAS  Google Scholar 

  36. A.M. Appel, D.L. DuBois, M.R. DuBois, J. Am. Chem. Soc. 127, 12717 (2005).

    Article  CAS  Google Scholar 

  37. P. Connolly, J.H. Espenson, Inorg. Chem. 25, 2684 (1986).

    Article  CAS  Google Scholar 

  38. X. Hu, B.S. Brunschwig, J.C. Peters, J. Am. Chem. Soc. 129, 8988 (2007).

    Article  CAS  Google Scholar 

  39. P.-A. Jacques, V.Artero, J. Pécaut, M. Fontecave, Proc. Nat. Acad. Sci. U.S.A. 106, 20627 (2009).

    Article  CAS  Google Scholar 

  40. J.L. Dempsey, B.S. Brunschwig, J.R. Winkler, H.B. Gray, Acc. Chem. Res. 42,1995 (2009).

    Article  CAS  Google Scholar 

  41. D.E. Berning, B.C. Noll, D.L. DuBois, J. Am. Chem. Soc. 121, 11432 (1999).

    Article  CAS  Google Scholar 

  42. J.W. Raebiger, A. Miedaner, C.J. Curtis, S.M. Miller, D.L. DuBois, J. Am. Chem. Soc. 126, 5502 (2004).

    Article  CAS  Google Scholar 

  43. C.J. Curtis, A. Miedaner, J.W. Raebiger, D.L. DuBois, Organometallics 23, 511 (2004).

    Article  CAS  Google Scholar 

  44. D.E. Berning, A. Miedaner, C.J. Curtis, B.C. Noll, M.R. DuBois, D.L. DuBois, Organometallics 20,1832 (2001).

    Article  CAS  Google Scholar 

  45. A. Miedaner, J.W. Raebiger, C.J. Curtis, S.M. Miller, D.L. DuBois, Organometallics 23, 2670 (2004).

    Article  CAS  Google Scholar 

  46. M.R. Nimlos, C.H. Chang, C.J. Curtis, A. Miedaner, H.M. Pilath, D.L. DuBois, Organometallics 27, 2715 (2008).

    Article  CAS  Google Scholar 

  47. S.S. Kristjánsdóttir, J.R. Norton, in Transition Metal Hydrides: Recent Advances in Theory and Experiment, A. Dedieu, Ed. (VCH, New York, 1991), pp. 309–359.

    Google Scholar 

  48. C.J. Curtis, A. Miedaner, W.W. Ellis, D.L. DuBois, J. Am. Chem. Soc. 124, 1918 (2002).

    Article  CAS  Google Scholar 

  49. J.Y Yang, R.M. Bullock, W.J. Shaw, B. Twamley, K. Fraze, M. Rakowski DuBois, D.L. DuBois, J. Am. Chem. Soc. 131, 5935 (2009).

    Article  CAS  Google Scholar 

  50. A.D. Wilson, K. Fraze, B. Twamley, S.M. Miller, D.L. DuBois, M.R. DuBois, J. Am. Chem. Soc. 130,1061 (2008).

    Article  CAS  Google Scholar 

  51. J.W. Peters, W.N. Lanzilotta, B.J. Lemon, L.C. Seefeldt, Science 282, 1853 (1998).

    Article  CAS  Google Scholar 

  52. Y Montet, P. Amara, A. Volbeda, X. Vernède, E.C. Hatchikian, M.J. Field, M. Frey, J.C. Fontecilla-Camps, Nat. Struct. Biol. 4, 523 (1997).

    Article  CAS  Google Scholar 

  53. G.M. Jacobsen, J.Y. Yang, B. Twamley, A.D. Wilson, R.M. Bullock, M. Rakowski DuBois, D.L. DuBois, Energy Environ. Sci. 1, 167 (2008).

    Article  CAS  Google Scholar 

  54. L.A. Berben, J.C. Peters, Chem. Commun. 46, 398 (2010).

    Article  CAS  Google Scholar 

  55. A. Le Goff, V Artero, B. Jousselme, P.-D. Tran, N. Guillet, R. Métayé, A. Fihri, S. Palacin, M. Fontecave, Science 326, 1384 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge support by the Office of Basic Energy Sciences, Division of Chemical Sciences, Biosciences and Geosciences of the Department of Energy and by the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. The Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jenny Y Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, J., Bullock, R., DuBois, M. et al. Fast and efficient molecular electrocatalysts for H2 production: Using hydrogenase enzymes as guides. MRS Bulletin 36, 39–47 (2011). https://doi.org/10.1557/mrs.2010.8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2010.8

Navigation