Skip to main content
Log in

Subnanosecond magnetization dynamics driven by strain waves

  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

The magnetic properties of a magnetic material can be modified by elastic deformation—termed the magnetoelastic effect. This effect is considered an alternative approach to magnetic fields for the low-power control of magnetization states of nanostructures since it avoids charge currents that create heat dissipation. This article describes the effects of dynamic strain accompanying a surface acoustic wave on magnetic nano-elements. We use a technique based on stroboscopic x-ray microscopy to simultaneously image the evolution of both strain and magnetization at the nanometer length and picosecond time scales. The study shows that there is a delayed response of the magnetization to dynamic strain, adjustable by the magnetic properties of the material. The presented analysis provides insights into dynamic magnetoelastic coupling in nanostructures with implications for the design of strain-controlled nanodevices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. J. Akerman, Science 308, 508 (2005).

    Google Scholar 

  2. N. Locatelli, V. Cros, J. Grollier, Nat. Mater. 13, 11 (2014).

    Google Scholar 

  3. R.J. Zeches, M.D. Rossell, J.X. Zhang, A.J. Hatt, Q. He, C.H. Yang, A. Kumar, C.H. Wang, A. Melville, C. Adamo, G. Sheng, Y.H. Chu, J.F. Ihlefeld, R. Erni, C. Ederer, V. Gopalan, L.Q. Chen, D.G Schlom, N.A. Spaldin, L.W. Martin, R. Rameshe, Science 326, 977 (2009).

    Google Scholar 

  4. C. Si, Z. Sun, F. Liu, Nanoscale 8, 3207 (2016).

    Google Scholar 

  5. N. Lei, T. Devolder, G. Agnus, P. Aubert, L. Daniel, J.-V. Kim, W. Zhao, T. Trypiniotis, R.P. Cowburn, C. Chappert, D. Ravelosona, P. Lecour, Nat. Commun. 4, 1378 (2013).

    Google Scholar 

  6. M. Buzzi, R.V. Chopdekar, J.L. Hockel, A. Bur, T. Wu, N. Pilet, P. Warnicke, G.P. Carman, L.J. Heyderman, F. Nolting, Phys. Rev. Lett. 111, 027204 (2013).

    Google Scholar 

  7. D. Halley, N. Najjari, H. Majjad, L. Joly, P. Ohresser, F. Scheurer, C. Ulhaq-Bouillet, S. Berciaud, B. Doudin, Y. Henry, Nat. Commun. 5, 3167 (2014).

    Google Scholar 

  8. P. Li, A. Chen, D. Li, Y. Zhao, S. Zhang, L. Yang, Y. Liu, M. Zhu, H. Zhang, X. Han, Adv. Mater. 26, 4320 (2014).

    Google Scholar 

  9. S. Finizio, M. Foerster, M. Buzzi, B. Krüger, M. Jourdan, C.A.F. Vaz, J. Hockel, T. Miyawaki, A. Tkach, S. Valencia, F. Kronast, G.P. Carman, F. Nolting, M. Kläui, Phys. Rev. Appl. 1, 021001 (2014).

    Google Scholar 

  10. H. Zheng, J. Wang, S.E. Lofland, Z. Ma, L. Mohaddes-Ardabili, T. Zhao, L. Salamanca-Riba, S.R. Shinde, S.B. Ogale, F. Bai, D. Viehland, Y. Jia, D.G. Schlom, M. Wuttig, A Roytburd, R. Ramesh, Science 303, 661 (2004).

    Google Scholar 

  11. J.M. Hernandez, P.V. Santos, F. Macià, A. García-Santiago, J. Tejada, Appl. Phys. Lett. 88, 012503 (2006).

    Google Scholar 

  12. S. Davis, A. Baruth, S. Adenwalla, Appl. Phys. Lett. 97, 232507 (2010).

    Google Scholar 

  13. M. Weiler, L. Dreher, C. Heeg, H. Huebl, R. Gross, M.S. Brandt, S.T.B. Goennenwein, Phys. Rev. Lett. 106, 117601 (2011).

    Google Scholar 

  14. M. Weiler, H. Huebl, F.S. Goerg, F.D. Czeschka, R. Gross, S.T.B. Goennenwein, Phys. Rev. Lett. 108, 176601 (2012).

    Google Scholar 

  15. L. Thevenard, I.S. Camara, S. Majrab, M. Bernard, P. Rovillain, A. Lemaître, C. Gourdon, J.-Y. Duquesne, Phys. Rev. B Condens. Matter 93, 134430 (2016).

    Google Scholar 

  16. D. Labanowski, A. Jung, S. Salahuddin, Appl. Phys. Lett. 111, 102904 (2017).

    Google Scholar 

  17. M. Foerster, F. Macià, N. Statuto, S. Finizio, A. Hernández-Mínguez, S. Lendínez, P.V. Santos, J. Fontcuberta, J.M. Hernàndez, M. Klaeui, L. Aballe, Nat. Commun. 8, 407 (2017).

    Google Scholar 

  18. L. Aballe, M. Foerster, E. Pellegrin, J. Nicolas, S. Ferrer, J. Synchrotron Radiat. 22, 745 (2015).

    Google Scholar 

  19. M. Foerster, J. Prat, V. Massana, N. Gonzalez, A. Fontsere, B. Molas, O. Matilla, E. Pellegrin, L. Aballe, Ultramicroscopy 171, 63 (2016).

    Google Scholar 

  20. B.A. Auld, Acoustic Fields and Waves in Solids, Vol. 2 (Wiley, New York, 1973).

    Google Scholar 

  21. M.F. Lewis, “On Rayleigh Waves and Related Propagating Acoustic Waves,” in Rayleigh-Wave Theory and Application, Springer Series on Wave Phenomena, vol. 2, E.A Ash, E.G.S. Paige, Eds. (Springer, Berlin, 1985), pp. 37 – 58.

  22. B. van Waeyenberge, A. Puzic, H. Stoll, K.W. Chou, T. Tyliszczak, R. Hertel, M. Fähnle, H. Brückl, K. Rott, G. Reiss, I. Neudecker, D. Weiss, C.H. Back, G. Schütz, Nature 444, 461 (2006).

    Google Scholar 

Download references

Acknowledgments

The project was supported by the ALBA in-house research program through IH2015PEEM and the allocation of in-house beamtime as well as with proposal 2016021647. F.M. acknowledges support from the RyC through Grant No. RYC-2014-16515 and from MINE-CO through the SO Program (Grant Nos. SEV-2015-0496 and MAT2017-85232-R). Funding through MAT2015–69144-P (J.M.H. and F.M.), MAT2015-64110-C2-2-P (L.A. and M.F.) (MINECO/FEDER-UE) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Foerster.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Foerster, M., Aballe, L., Hernàndez, J.M. et al. Subnanosecond magnetization dynamics driven by strain waves. MRS Bulletin 43, 854–859 (2018). https://doi.org/10.1557/mrs.2018.258

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2018.258

Navigation