Skip to main content

Advertisement

Log in

Synthesis and Processing of Organic Materials in Supercritical Carbon Dioxide

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Carbon dioxide (CO2) is arguably the most high-profile molecule of recent times. Although much of its bad press comes from environmental concerns associated with greenhouse gas emissions, there exists the possibility to harness this abundant resource for application to the synthesis and processing of useful materials. This article describes a selection of recent successes in using supercritical carbon dioxide (scCO2) as a solvent for polymerizations. Further, the uses of compressed CO2 as a processing tool in the fabrication of materials for applications such as coatings and biomaterials are discussed. Finally, the application of scCO2 to photolithography is demonstrated, with particular focus on CO2 as a processing solvent for the patterning of organic electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Poliakoff, M.J. Fitzpatrick, T.R. Farren, P.T. Anastas, Science 297, 807 (2002).

    Google Scholar 

  2. E.J. Beckman, J. Supercrit. Fluids 28, 121 (2004).

    Google Scholar 

  3. S.K. Ritter, Chem. Eng. News 85, 11 (2007).

  4. W. Leitner, Appl. Organomet. Chem. 14, 809 (2000).

  5. S.L. Wells, J. DeSimone, Angew. Chem., Int. Ed. 40, 518 (2001).

  6. X.G. Zhang, K.P. Johnson, Chin. Sci. Bull. 52, 27 (2007).

  7. A.I. Cooper, J.D. Londono, G. Wignall, J.B. McClain, E.T. Samulski, J.S. Lin, A. Dobrynin, M. Rubenstein, A.L.C. Burke, J.M.J. Fréchet, J.M. DeSimone, Nature 389, 368 (1997).

  8. C.M. Rayner, Org. Process Res. Dev. 11, 121 (2007).

  9. K. Mikami, Green Reaction Media in Organic Synthesis (Blackwell, Oxford, U.K., 2005).

  10. W. Leitner, Acc. Chem. Res. 35, 746 (2002).

  11. P.G. Jessop, W. Leitner, Chemical Synthesis Using Supercritical Fluids (Wiley, New York, 1999).

  12. J.M. DeSimone, Z. Guan, C.S. Elsbern, Science 257, 945 (1992).

  13. C.L. Bray, B. Tan, C.D. Wood, A.I. Cooper, J. Mater. Chem. 15, 456 (2005).

  14. B. Tan, H.M. Woods, P. Licence, S.M. Howdle, A.I. Cooper, Macromolecules 38, 1691 (2005).

  15. T. Sarbu, T. Styranec, E.J. Beckman, Nature 405, 165 (2000).

  16. T. Tsukahara, Y. Kayaki, T. Ikariya, Y. Ikeda, Angew. Chem., Int. Ed. 43, 3719 (2004).

  17. J.L. Kendall, D.A. Canelas, J.L. Young, J.M. DeSimone, Chem. Rev. 99, 543 (1999).

  18. A.I. Cooper, J. Mater. Chem. 10, 207 (2000).

  19. M. McCoy, Chem. Eng. News 77, 10 (1999).

  20. C.D. Wood, A.I. Cooper, J.M. DeSimone, Curr. Opin. Solid State Mater. Sci. 8, 325 (2004).

  21. www.teflon.com (accessed June 4, 2008).

  22. T.S. Ahmed, J.M. DeSimone, G.W. Roberts, Macromolecules 40, 9322 (2007).

  23. A.M. Gregory, K.J. Thurecht, S.M. Howdle, Macromolecules 41, 1215 (2008).

  24. S. Villarroya, J. Zhou, C.J. Duxbury, A. Heis, S.M. Howdle, Macromolecules 39, 633 (2006).

  25. H. Arakawa, M. Aresta, J. Armor, M. Barteau, E. Beckman, A. Bell, J. Bercaw, C. Creutz, D.A. Dixon, D. Dixon, K. Domen, D. DuBois, J. Eckert, E. Fujita, D. Gibson, W. Goddard, D. Goodman, J. Keller, G. Kubas, H. Kung, J. Lyons, L. Manzer, T. Marks, K. Morokuma, K. Nicholas, R. Periana, L. Que, J. Rostrup-Nielson, W. Sachtler, L. Schmidt, A. Sen, G. Somorjai, P. Stair, B. Stults, W. Tumas, Chem. Rev. 101, 953 (2001).

  26. X.-B. Lu, Y. Wang, Angew. Chem., Int. Ed. 43, 3574 (2004).

  27. S. Inoue, H. Koinuma, T. Tsuruta, J. Polym. Sci. C: Polym. Lett. 7, 287 (1969).

  28. L.M. Stamp, S.A. Mang, A.B. Holmes, K.A. Knights, Y.R.D. Miguel, I.F. McConvey, Chem. Commun. 23, 2502 (2001).

  29. S. Mang, A.I. Cooper, M.E. Colclough, N. Chauhan, A.B. Holmes, Macromolecules 33, 303 (2000).

  30. C.T. Cohen, G.W. Coates, J. Polym. Sci. A: Polym. Chem. 44, 5182 (2006).

  31. N.J. Robertson, Z. Qin, G.C. Dallinger, E.B. Lobkovsky, S. Lee, G.W. Coates, Dalton T r a n s . 5390 (2006).

  32. K.L. Hoy, K.A. Nielson, Chem. Abstr. 112:218843, EP 350909 (1990).

  33. K.L. Hoy, K.A. Nielson, L. Chinsoo, Chem. Abstr. 112:218842, EP 350910 (1990).

  34. J.N. Hay, A. Khan, J. Mater. Sci. 37, 4743 (2002).

  35. O.R. Davies, A.L. Lewis, M.J. Whitaker, H. Tai, K.M. Shakesheff, S.M. Howdle, Adv. Drug Delivery Rev. 60, 373 (2008).

  36. H. Tai, V.K. Popov, K.M. Shakesheff, S.M. Howdle, Biochem. Soc. Trans. 35, 516 (2007).

  37. B. Tan, J.-Y. Lee, A.I. Cooper, Macromolecules 40, 1945 (2007).

  38. J.-Y. Lee, B. Tan, A.I. Cooper, Macromolecules 40, 1955 (2007).

  39. A.I. Cooper, Adv. Mater. 13, 1111 ( 2001).

  40. G.L. Weibel, C.K. Ober, Microelectron. Eng. 65, 145 (2003).

  41. C.A. Jones, A. Zweber, J.P. DeYoung, J.B. McClain, R. Carbonell, J.M. DeSimone, Crit. Rev. Solid State Mater. Sci. 29, 97 (2004).

  42. E.D. Williams, R.U. Ayres, M. Heller, Environ. Sci. Technol. 36, 5504 (2002).

  43. L.F. Thompson, Introduction to Microlithography (American Chemical Society, Washington, DC, ed. 2, 1998).

  44. H. Ito, Adv. Polym. Sci. 172, 37 (2005).

  45. E.N. Hoggan, D. Flowers, K. Wang, J.M. DeSimone, R.G. Carbonell, Ind. Eng. Chem. Res. 43, 2113 (2004).

  46. C.K. Ober, A.H. Gabor, P. Gallagher-Wetmore, R.D. Allen, Adv. Mater. 9, 1039 (1997).

  47. M.K. Boggiano, D. Vellenga, R. Carbonell, V.S. Ashby, J.M. DeSimone, Polymer 47, 4012 (2006).

  48. N. Sundararajan, S. Yang, K. Ogino, S. Valiyaveettil, J.-G. Wang, X. Zhou, C.K. Ober, S.K. Obendorf, R.D. Allen, Chem. Mater. 12, 41 (2000).

  49. V.Q. Pham, R.J. Ferris, A. Hamad, C.K. Ober, Chem. Mater. 15, 4893 (2003).

  50. S. Yang, J. Wang, K. Ogino, S. Valiyaveettil, C.K. Ober, Chem. Mater. 12, 33 (2000).

  51. E.N. Hoggan, K. Wang, D. Flowers, J.M. DeSimone, R.G. Carbonell, IEEE Trans. Semicond. Manuf. 17, 510 (2004).

  52. N. Felix, C.K. Ober, Chem. Mater. 20, 2932 (2008).

  53. N.M. Felix, K. Tsuchiya, C.K. Ober, Adv. Mater. 18, 442 (2006).

  54. M. Yoshiwa, H. Kageyama, Y. Shirota, F. Wakaya, K. Gamo, M. Takai, Appl. Phys. Lett. 69, 2605 (1996).

  55. S.W. Chang, R. Ayothi, D. Bratton, D. Yang, N. Felix, H.B. Cao, H. Deng, C.K. Ober, J. Mater. Chem. 16, 1470 (2006).

  56. G. Malliaras, R. Friend, Phys. Today 58, 53 (2005).

  57. H.S. Hwang, A.A. Zakhidov, J.-K. Lee, X. Andre, J.A. DeFranco, H.-H. Fong, A.B. Holmes, G.G. Malliaras, C.K. Ober, J. Mater. Chem. 18, 3087 (2008).

  58. C.K. Luscombe, W.T.S. Huck, A.B. Holmes, T. Lu, G.A. Leeke, R.C.D. Santos, B. Al-Duri, J.P.K. Seville, Mater. Res. Soc. Symp. Proc. 734, 103 (2003).

  59. L. Li, K.E. Counts, S. Kurosawa, A.S. Teja, D.M. Collard, Adv. Mater. 16, 180 (2004).

    Google Scholar 

  60. C.K. Luscombe, S. Proemmel, W.T.S. Huck, A.B. Holmes, H. Fukushima, J. Org. Chem. 72, 5505 (2007).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCluskey, G.E., Lee, J.K., Sha, J. et al. Synthesis and Processing of Organic Materials in Supercritical Carbon Dioxide. MRS Bulletin 34, 108–115 (2009). https://doi.org/10.1557/mrs2009.29

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2009.29

Navigation