Skip to main content
Log in

Graphene Electromechanical Actuation; Origins, Optimization and Applications

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Graphene-based materials have emerged as exceptional candidates for the development of novel, high performance actuators. Developing such an actuation material requires an in depth knowledge of the physics of operation and, therefrom, how to best optimize its performance. We investigate the electromechanical actuation of pristine monolayer graphene to elucidate the origin of this material’s exceptional electromechanical actuation performance. It is shown that the electrostatic double-layer (EDL) effect is dominant compared to the quantum-mechanical (QM) effect upon charging and electrolyte immersion. Seeking to optimize the QM actuation performance, we preliminarily investigate graphene oxide (GO) as a potential graphene-based actuation material, and find that it exhibits both unique and high performance responses. Having demonstrated huge stresses (~100 GPa) and high strains (~0.4%), graphene-based materials are uniquely positioned to address future industrial actuation challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Geim, Science 324, 1530 (2009).

    Article  CAS  Google Scholar 

  2. T. Ihn, J. Güttinger, F. Molitor, S. Schnez, E. Schurtenberger, A. Jacobsen, S. Hellmüller, T. Frey, S. Dröscher, C. Stampfer, K. Ensslin, Mater. Today 13, 44 (2010).

    Article  CAS  Google Scholar 

  3. L. De Arco, Y. Zhang, C. Schlenker, K. Ryu, M. Thompson, C. Zhou, ACS Nano 4, 2865 (2010).

    Article  Google Scholar 

  4. H. Li, L. Zou, L. Pan, Z. Sun, Environ. Sci. Technol. 44, 8692 (2010).

    Article  CAS  Google Scholar 

  5. P. Simon, Y. Gogotsi, Nat. Mater. 7, 845 (2008).

    Article  CAS  Google Scholar 

  6. Q. S. Zheng, J. Z. Liu, Q. Jiang, Phys. Rev. B 65, 245409 (2002).

    Article  Google Scholar 

  7. R. Baughman, C. Cui, A. Zakhidov, Z. Iqbal, J. Barisci, G. Spinks, G. Wallace, A. Mazzoldi, D. DeRossi, A. Rinzler, O. Jaschinski, S. Roth, M. Kertesz, Science 284, 1340 (1999).

    Article  CAS  Google Scholar 

  8. G. Sun, J. Kürti, M. Kertesz, R. Baughman, J. Am. Chem. Soc. 124, 15076 (2002).

    Article  CAS  Google Scholar 

  9. M. Verissimo-Alves, B. Koiller, H. Chacham, R. Capaz, Phys. Rev. B 67, 161401 (2003).

    Article  Google Scholar 

  10. L. Pastewka, P. Koskinen, C. Elsässer, M. Moseler, Phys. Rev. B 80, 155428 (2009).

    Article  Google Scholar 

  11. G. Rogers, J. Liu, J. Am. Chem. Soc. 133, 10858 (2011).

    Article  CAS  Google Scholar 

  12. G. Kresse, J. Furthmüller, Phys. Rev. B 54, 169 (1996).

    Article  Google Scholar 

  13. G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999).

    Article  CAS  Google Scholar 

  14. W. Tang, E. Sanville, G. Henkelman, J. Phys.: Condens. Matter 21, 084204 (2009).

    CAS  Google Scholar 

  15. J. Bunch, A. van der Zande, S. Verbridge, I. Frank, D. Tanenbaum, J. Parpia, H. Craighead, P. McEuen, Science 315, 490 (2007).

    Article  CAS  Google Scholar 

  16. D. Pandey, R. Reifenberger, R. Piner, Surf. Sci. 602, 1607 (2008).

    Article  CAS  Google Scholar 

  17. Z. Xu, K. Xue, Nanotechnol. 21, 045704 (2010).

    Article  Google Scholar 

  18. Z. Li, W. Zhang, Y. Luo, J. Yang, J. Hou, J. Am. Chem. Soc. 131, 6320 (2009).

    Article  CAS  Google Scholar 

  19. T. Kawai, Y. Miyamoto, Curr. Appl. Phys., doi:10.1016/j.cap.2011.07.008 (2011).

    Google Scholar 

  20. Q. S. Zheng, B. Jiang, S. P. Liu, Y. X. Wang, L. Lu, Q. K. Xue, J. Zhu, Q. Jiang, S. Wang, L. M. Peng, Phys. Rev. Lett. 100, 067205 (2008).

    Article  Google Scholar 

  21. J. Liang, Y. Huang, J. Oh, M. Kozlov, D. Sui, F. Shaoli, R. Baughman, Y. Ma, Y. Chen, Adv. Funct. Mater. 21, 3778 (2011).

    Article  CAS  Google Scholar 

  22. J. Liang, Y. Xu, D. Sui, L. Zhang, Y. Huang, Y. Ma, F. Li, Y. Chen, J. Phys. Chem. C 114, 17465 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Victorian Partnership for Advanced Computing and the NCI Facility at the Australian National University (Merit Allocation Scheme award) for research support. JZL acknowledges the support of the Faculty of Engineering, Monash University (Small Grant).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rogers, G.W., Liu, J.Z. Graphene Electromechanical Actuation; Origins, Optimization and Applications. MRS Online Proceedings Library 1407, 270 (2012). https://doi.org/10.1557/opl.2012.270

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/opl.2012.270

Navigation