Skip to main content
Log in

Electrical Characterization of Electrochemically Grown ZnO Nanorods using STM

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

ZnO nanorods were grown homogenously and vertically on ITO using electrochemical techniques. The physical properties of the nanorods were characterized using SEM and optical absorption. The electrical conductivity, deduced using STM at different tip heights, and was found to be 20 Ω-cm with a carrier concentration of 3×1015 cm−3.The results show that electrochemically grown ZnO nanorods have electrical properties suitable for use in electronic devices such as solar cells and transistors. A-Si:H p-i-n solar cells were then deposited after the fabrication on the ZnO on ITO-coated substrates. The results show that the textured solar cell performance was 30% higher than the planar solar cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Xu and L. Sun, Energy & Environmental Science 4, no. 3 (2011): 818.

    Article  CAS  Google Scholar 

  2. H. Zhou, A. Colli, A. Ahnood, Y. Yang, N. Rupesinghe, T. Butler, I. Haneef, P. Hiralal, A. Nathan, G.A.J. Amaratunga, Adv. Materials, 21, 38–39, 3919-3923, (2009)

    Google Scholar 

  3. D. Pradhan and K. Tong Leung, Langmuir 24, no. 17 (2008): 9707–9716.

    Article  CAS  Google Scholar 

  4. V. Srikant and D. R. Clarke, Journal of Applied Physics 81 (1997): 6357.

    Article  CAS  Google Scholar 

  5. C. Uher, R. L. Hockey, and E. Ben-Jacob, Phys Rev B 35 (1987) 4483–4488

    Article  CAS  Google Scholar 

  6. S. Paulson, A. Helser, M. B Nardelli, R. M. Taylor, M. Falvo, R. Superfine, S. Washburn, Science 290, (2000) 1742–1744

    Article  CAS  Google Scholar 

  7. E. Schlenker, A. Bakin, B. Postels, A. C. Mofor, H.-H. Wehmann, T. Weimann, P. Hinze, and A. Waag, Phys. Stat. Sol. B 244, (2007) 1473–1477

    Article  CAS  Google Scholar 

  8. Y. W. Heo, L. C. Tien, D. P. Norton, B. S. Kang, F. Ren, B. P. Gila, S. J. Peartona, Appl Phys Lett 85, (2004) 2002–2004

    Article  CAS  Google Scholar 

  9. Y.-J. Ma, Z. Zhang, F. Zhou, L. Lu, A. Jinand C. Gu, Nanotechnology 16 (2005) 746–749

    Article  CAS  Google Scholar 

  10. Q.H. Li, Q. Wan, Y.X. Liang, and T.H. Wang, Appl Phys Lett 84, (2004) 4556–4558

    Article  CAS  Google Scholar 

  11. C. Díaz-Guerra and J. Piqueras, “Journal of Applied Physics, vol. 86, no. 4, p. 1874, Aug. 1999.

    Article  Google Scholar 

  12. S. S. Hegedus and W. N. Shafarman, Research and Applications, vol. 12, no. 2-3, pp. 155–176, Mar. 2004.

    CAS  Google Scholar 

  13. R. Dewan and D. Knipp, Journal of Applied Physics, vol. 106, no. 7, p. 074901, Oct. 2009.

    Article  Google Scholar 

Download references

Acknowledgment

The authors would like to thank Dr Steve Hudziak, University College London for the STM manipulation. This work was supported in part by EU-FP7 Project ORAMA CP-IP 246334-2 and the Royal Society Wolfson Research Merit Award, UK.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suzuki, Y., Ibheanacho, B., Ahnood, A. et al. Electrical Characterization of Electrochemically Grown ZnO Nanorods using STM. MRS Online Proceedings Library 1391, 71–75 (2012). https://doi.org/10.1557/opl.2012.801

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/opl.2012.801

Navigation