Skip to main content

Advertisement

Log in

Distributed Recycling of Post-Consumer Plastic Waste in Rural Areas

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Although the environmental benefits of recycling plastics are well established and most geographic locations within the U.S. offer some plastic recycling, recycling rates are often low. Low recycling rates are often observed in conventional centralized recycling plants due to the challenge of collection and transportation for high-volume low-weight polymers. The recycling rates decline further when low population density, rural and relatively isolated communities are investigated because of the distance to recycling centers makes recycling difficult and both economically and energetically inefficient. The recent development of a class of open source hardware tools (e.g. RecycleBots) able to convert post-consumer plastic waste to polymer filament for 3-D printing offer a means to increase recycling rates by enabling distributed recycling. In addition, to reducing the amount of plastic disposed of in landfills, distributed recycling may also provide low-income families a means to supplement their income with domestic production of small plastic goods. This study investigates the environmental impacts of polymer recycling. A life-cycle analysis (LCA) for centralized plastic recycling is compared to the implementation of distributed recycling in rural areas. Environmental impact of both recycling scenarios is quantified in terms of energy use per unit mass of recycled plastic. A sensitivity analysis is used to determine the environmental impacts of both systems as a function of distance to recycling centers. The results of this LCA study indicate that distributed recycling of HDPE for rural regions is energetically favorable to either using virgin resin or conventional recycling processes. This study indicates that the technical progress in solar photovoltaic devices, open-source 3-D printing and polymer filament extrusion have made distributed polymer recycling and upcycling technically viable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L.C.-M. Lebreton, S.D. Greer, J.C. Borrero. Marine Pollution Bulletin. 54, 3 (2012).

    Google Scholar 

  2. L. Shen, J. Haufe, M.K. Patel. Product Overview and Market Projection of Emerging Bio-based Plastics PRO-BIP 2009, Utrecht University Final Report, (2009).

  3. A. Lotfi, Polymer Recycling. WWW document, (http://www.lotfi.net/recycle/plastic.html).

  4. J.F. Rees. J. Chem. Technol. Biotechnol. 30, 1 (1980).

    Google Scholar 

  5. J.G.B. Derraik. Marine Pollution Bulletin. 44 (2002).

  6. U.S. National Park Service. Time it takes for garbage to decompose in the environment. WWW document http://des.nh.gov/organization/divisions/water/wmb/coastal/trash/documents/marine_debris.pdf).

  7. U. Arena, M.L. Mastellone, F. Perugini. Int. J. of Life Cycle Assessment. 8, 2 (2003).

    Article  Google Scholar 

  8. F. Perugini, M.L. Mastellone, U. Arena. Environ. Prog. 24, 2 (2005).

    Article  Google Scholar 

  9. P.M. Subramanian. Resources, Conservation and Recycling. 28, 3–4 (2000).

    Article  Google Scholar 

  10. A. Björklund, G. Finnveden. Resources, Conservation and Recycling. 44, 4 (2005)

    Article  Google Scholar 

  11. U. S. Census Bureau, 2010 Census Urban and Rural Classification and Urban Area Criteria. WWW doc http://www.census.gov/geo/www/ua/2010urbanruralclass.html).

  12. S. Upcraft, R. Fletcher. Assembly Automation. 23, 4 (2003).

    Article  Google Scholar 

  13. I. Gibson, D.W. Rosen, B. Stucker. Physics Procedia. 5 (2010).

  14. V. Petrovic, J.V.H. Gonzalez, O.J. Ferrando, J.D. Gordillo, J.R.B. Puchades, L.P. Griñan. Int. J. of Production Research. 49, 4 (2010).

    Google Scholar 

  15. A. Gebhardt, F. Schmidt, J. Hötter, W. Sokalla, P. Sokalla. Physics Procedia. 5, 2 (2010).

    Article  Google Scholar 

  16. N.B. Crane, J. Tuckerman, G.N. Nielson. Rapid Prototyping Journal. 17, 3 (2011).

    Article  Google Scholar 

  17. J. M Pearce, C. Morris Blair, K. J. Laciak, R. Andrews, A. Nosrat, I. Zelenika-Zovko, J. of Sust. Dev. 3(4), 17 (2010).

    Google Scholar 

  18. D. Rosato. Plastics Processing Data Handbook. 2nd ed. (Springer-Verlag, 1997).

    Google Scholar 

  19. R. Torcellini. Plastic extruder for growing media. WWW document, (http://web4deb.blogspot.com/2010/12/plastic-extruder-for-growing-media.html).

  20. C. Baechler, M. DeVuono, J.M. Pearce. Distributed recycling of waste polymer into reprap feedstock. Rapid Prototyping Journal, 19(2) (in press) March 2013.

    Google Scholar 

  21. Filabot Personal Filament Maker. WWW document http://filabot.com).

  22. Lyman Filament Extruder. WWW document http://www.thingiverse.com/thing:30642).

  23. M. Loultcheva, M. Proietto, N. Jilov, F.P. La Mantia. Polymer Degradation and Stability. 57, 1 (1997).

    Article  Google Scholar 

  24. Franklin Associates, Life cycle inventory of 100% postconsumer HDPE and PET recycled resin from postconsumer containers and packaging, (2011).

    Google Scholar 

  25. G. Hammond, C. Jones. Inventory of carbon & energy (ICE) Version 1.6a, Bath U. (2008).

  26. J. Pearce, A. Lau, Net Energy Analysis For Sustainable Energy Production From Silicon Based Solar Cells. Proc. of A. Soc. of Mech. Eng. Solar, Cambell-Howe (Ed.), (2002).

    Google Scholar 

  27. K. Branker, M. J.M. Pathak, J. M. Pearce, A Review of Solar Photovoltaic Levelized Cost of Electricity”, Renewable & Sustainable Energy Reviews 15, 4470 (2011).

    Article  Google Scholar 

  28. K. Branker, E. Shackles, J. M. Pearce, Peer-to-Peer Financing Mechanisms to Accelerate Renewable Energy Deployment. J. of Sust. Finance & Investment 1(2), 138 (2011).

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge technical support from A. Vora. This research was supported by Sustainable Futures Institute and a McArthur Research Internship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Pearce.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kreiger, M., Anzalone, G.C., Mulder, M.L. et al. Distributed Recycling of Post-Consumer Plastic Waste in Rural Areas. MRS Online Proceedings Library 1492, 101–106 (2012). https://doi.org/10.1557/opl.2013.258

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/opl.2013.258

Navigation